宝鸡西门子S7-200代理商
宝鸡西门子S7-200代理商
像大多数吹塑设备原始制造商(OEMs)一样,基于多元智能的R&B塑料机械有限公司(R&B)必须jingque协调各种机械的运动。他们的机器使用过闭环液压驱动器搭配专用运动控制卡件。这套方案不仅价格昂贵,而且难于协调。近,该公司成功地用常规PLC实现了吹塑机运动控制功能,这样做既提高了产量,又缩短了机器运转周期,还削减了生产成本。
R&B能够提供塑料机械、铸造、加工、以及切割系统的解决方案。他们提供的产品包括可编程控制器、触摸屏式操作界面、独立的型坯控制器、倾斜或水平机械、模件表面补偿压盘、机械切割机、单螺杆挤出机以及高精度的吹塑加工设备。
该公司还可以根据客户要求设计并定制设备,以满足各种生产需求。此外,他们还提供机器检验、安装/拆除、维修以及金属切割服务。
将运动控制集成到PLC程序使编程变得简单,而且提高了R&B塑料机械公司系列
吹塑机的性能。图片来源:Siemens SEA
用PLC实现运动控制
一种特殊的R&B吹塑机器有9根伺服液压驱动轴——3根用来控制型坯(把材料挤压成空心管或半球体,这是吹塑工艺的步),6根用来控制运动。这种机器包含2个梭子,2个模具,以及2根吹管。运转时控制工程网版权所有,夹具反复打开和夹紧模具,吹管反复做上下运动,传送装置带动夹具至型坯正下方,到达吹气位置。
David Chin是NDC Technologies的技术人员,该公司是Siemens的战略合作伙伴,一同参与了R&B控制系统升级项目。Chin说:“R&B使用了标准的Siemens Simatic S7 PLC来控制这些位置运动。我们提供了一套功能模块,使R&B能运用PLC进行位置控制。其它的机器可能要使用运动控制器来控制运动,这是一种专用于伺服控制和定位的控制器。我们定制的功能模块能够达到与独立控制器相同的功能和性能。”
Chin说:“PLC通常很难做到高精度的伺服控制,这是专用运动控制器被广泛采用的原因。但是在我们的应用中,标准的Siemens S-7 PLC承担了运动控制功能,它通过液压驱动装置对各个部件进行定位。”
PLC还对30多个区域进行温度控制,这些区域包括加料斗、挤出机以及型坯顶部。其中12个区域既能加热又能冷却,另外18个只能加热。温控系统必须将机器各部分的温度误差范围控制在1度以内。型坯顶部要能够将料斗传来的冷塑料加热到415 °F。
常规PLC采用IEC-61131标准语言编写的功能模块控制所有的伺服液压系统驱动轴。它不需要特殊的运动控制环境。加入运动控制功能的PLC相对于专用PLC和独立的运动控制器而言,具有更出色的性能和更高效的处理能力。
集成型坯控制
R&B初希望通过PLC实现型坯控制。通常,吹塑机由机械控制器或基于PC的自动化设备控制。前者带有独立的型坯程序单元以及专用运动控制卡件;后者通过专用代码达到运动控制的要求。
然而,R&B希望将型坯程序集成到主机器控制器中。如果PLC的运算速度足够快,就能有够实现这一目标。用于型坯控制的模拟数据直接从一个位置检测器输入。所有的处理过程都和普通PLC程序一样。终,驱动型坯吹塑的液压阀由PLC输出的模拟信号控制。整个过程不需要借助任何专用设备。
该公司随后把其余的伺服液压轴控制程序也集成到PLC中。位置检测器通过SSI模块把数据传送到PLC。如有需要,可以通过Siemens的Profibus Isochrone(等时)模式将SSI模块传来的位置数据与PLC程序同步。同样,液压阀都由标准的模拟输出信号控制。
另外,R&B还把控制吹管与传送装置运行的程序集成到PLC中。当传送装置将模子带动到吹管位置时,吹管就会按程序设定向下运动。由于两者(传送装置与吹管)的转轴实现了协调控制,这个过程很少出错且不用担心会产生碰撞。
在把这项功能集成到PLC之前,由于吹管和传送装置之间无法通信,R&B无法实现两者的同步。PLC的通信协议使两者首度实现了同步。
减少空循环时间
吹塑过程中,所有机器吹制或冷却一个瓶子的时间都相差无几。但是,在循环时间,尤其是空循环时间(机器不在吹瓶的时间)方面,机器之间存在差异。循环时间是指开始吹一个瓶到准备吹另一个瓶之间的全部时间。
PLC中的运动控制功能提升了协调空循环动作的水平,从而减少了特定动作之间的间隔时间。它们能依据位置而不是时间协调各种动作。这样就能大大减少空循环的时间,为R&B赢得了循环时间上的优势。其结果是可以节省下大约20%的空循环时间。
事实证明控制工程网版权所有,采用基于常规PLC的自动化吹塑解决方案代替专用运动型坯控制器可以获得巨大的优势。由于所有的伺服功能都由一个功能模块控制,这意味着更好的协调性、更快的机器循环时间、更简洁高效的程序以及更精简的设备。另外,由于专用硬件都是小规模生产的,势必会产生质量控制和长期技术支持方面的问题,而且需要根据出现的问题修改设计,所有这些都会增加额外的经济投入。
事实证明,与基于PC的控制相比,基于PLC的自动化解决方案能为吹塑提供更有吸引力的成套控制设备。它们拥有更好的模块,使用了固态存储器控制工程网版权所有,不需要第三方操作系统,使用寿命更持久,长期支持更出色。与PC相比,PLC的关键优势之一是在突然关闭的情况下依然能够保存数据(如断电情况)。
R&B Plastics的Jake Losee说:“现在我们采用一个控制器控制PLC功能和运动控制功能。以前使用独立运动控制卡时的通信延迟已经不存在了。而且,我们能记录每根轴的转动。以前我们使用独立软件时,需要了解专用运动控制卡的技术人员对其进行编程。现在,用户可以通过人机界面(HMI)自行完成这些工作。”
Losee还说:“我们的一个目标是精简设备。额外的设备意味着更高的成本、更繁琐的维护以及更多的配套软件。这就要求我们对维护人员进行更多的培训。用PLC集成运动和型坯控制确实是一个高度优化的控制方案。
在过去的数十年中,工程师和科学家们使用可编程的逻辑控制器(PLC),实现了我们身边世界的自动化;在可预见的将来,PLC的应用仍将继续。PLC是专为离散控制应用而设计的,是工业应用中主要的有用工具;然而,随着工业机器和工厂复杂度的增加,仅凭PLC完成这些工作,即便可能,也是非常困难的。的自动化系统远超出了PLC的能力拓展,使得工业机器领域的工程师们不得不面对在其现有系统中集成更多I/O、处理和控制的需要。新推出的可编程自动化控制器(PAC)硬件系统,可以方便地与PLC集成,以便在工业机器中添加更多功能并提高其效率,这使得PAC成为PLC系统的理想解决方案。
目录
1. 提高机器的效率
2. 在现有PLC系统中添加I/O和信号处理功能
3. 将PAC集成至现有PLC系统
4. 总结
提高机器的效率
集成工业系统(I2S),一家数十年来专门生产现有金属轧机设备与控制系统的私营美国OEM公司,为我们提供了一个关于如何改善现有PLC系统的范例。多年来,I2S一直使用PLC实现其所产轧机的自动化和控制。近年来,该公司业已开始尝试升级其轧机控制系统以改善效率与质量。为了升级该系统并改进其机器设备,I2S需要这样一个解决方案,它能提供更高的模拟输入精度以便实现与其伽马测量传感器的接口,以及信号处理功能,以提取来自传感器的模拟信号并将该信号转换为一个极为准确的厚度测量值(PLC将在轧机控制循环中使用这一测量值)。
为了节约时间与成本,I2S首先尝试在现有PLC系统中实现模拟测量与处理功能。当发现PLC无法提供所需的jingque模拟I/O与信号处理功能时,I2S转向了NI CompactRIO——一个可重新配置的嵌入式PAC系统。
在现有PLC系统中添加I/O和信号处理功能
NI CompactRIO拥有一个嵌入式FPGA芯片与一个实时处理器,您可以通过内置的NI LabVIEW功能模块对其进行编程控制。CompactRIO还具有超过30个模拟与数字I/O模块,这些模块包含内置的信号调理(包括抗混叠、隔离、ADC和DAC等)、高速定时(模拟I/O高达800 kHz,数字I/O高达30 MHz)和高精度(高达24-位ADC)处理模块,以便与任一工业传感器或执行装置相连接。
I2S将CompactRIO模拟输入模块连接至伽马厚度传感器,以提供执行必要精度测量所需的高速定时与精度。由于每个I/O模块直接与FPGA相连,I2S工程师们可以利用LabVIEW FPGA方便地定制CompactRIO模拟I/O速率。
从伽玛传感器采集模拟数据之后,CompactRIO实时处理器利用内置的LabVIEW实时浮点功能模块,将来自传感器的数据转化为一个准确的厚度测量值。CompactRIO运行FPGA与实时处理器中的I/O与信号处理的所有功能,并将一个极为准确的厚度测量值发送至所连接的PLC,丝毫没有降低现有PLC控制循环的速率。
将PAC集成至现有PLC系统
将PAC连接至现有PLC架构的三种基本方法:
1. 基本模拟与数字I/O——可以将模拟和数字数据从PAC输出至PLC。这也是I2S将处理后的数据从CompactRIO PAC输出到运行轧机控制循环的PLC所采用的方法,
2. 工业网络——大量的PAC产品支持工业协议,如DeviceNet、Profibus和CANopen,以及基于以太网的协议(如TCP/IP、UDP和Modbus TCP/IP)。I2S选用以太网协议实现CompactRIO PAC间的数据传输,以及PAC、PLC与联网HMI间的接口。
3. OPC连接——PAC也可以充当过程控制(OPC)客户或服务器的OLE,与PLC或其它使用OPC标记的PAC收发网络数据。OPC标准提供了一组通用的例程,该例程给出了方便实现来自不同厂商的自动化系统的接口。
在I2S,每台轧机包含三个联网的CompactRIO系统。其中,连接至基于伽马的传感器的两个CompactRIO系统,执行模拟输入测量和信号处理功能,以计算jingque的厚度测量值。第三个CompactRIO系统接受来自其它两个系统的厚度测量值,并将一个模拟测量值输出至控制轧机的PLC。
处理后的数据通过以太网,以小于20毫秒的间隔在联网的CompactRIO系统间传送。CompactRIO测量值的采集、处理和传送,均以足够快的速度将jingque的厚度测量值输入至PLC控制循环,而不会降低控制循环的速度。利用带有10/100 Mbps以太网端口的基于LAN的CompactRIO系统,I2S可以通过一个标准的TCP/IP协议,方便地连接至联网的Allen-Bradley PLC和HMI系统。
总结
在未来的数年中,工程师与科学家们将继续使用PLC实现我们所处环境的自动化,但随着机械装置的进步和自动化效率的提高,PLC往往无法单独完成所有任务。PAC技术为PLC提供了很好的互补,它增加了传统PLC无法提供的高性能I/O和处理能力。通过多种可用于连接PAC与现有PLC架构的方法,工程师们现在拥有了一种提高其基于PLC的自动化系统的简便方法
自1907年台电除尘器成功地用于工业生产以来,电除尘器以其除尘效率高、阻力损失少、处理烟气量大、能处理高温烟气和腐蚀性烟气、日常运行费用低等众多优点,使用领域不断扩大。到目前为止,电除尘器已经是电力、冶金、建材、化工等众多行业除尘设备的。电除尘器的结构、性能和控制方式等也日臻完善,plc控制在电除尘系统各部分的控制中都有不同程度的应用,作用显著。
一、电除尘系统工艺流程及基本原理
图1 电除尘基本原理示意图
电除尘器是在两个曲率半径相差较大的金属收尘极(阳极)和电晕极(阴极)上通过高压直流电,并维持一个足以使含尘气体(指一般的含尘烟气,不含腐蚀性和剧毒)电离的静电场(见图1)。含尘气体在静电场中电离后所生成的电子、阴离子和阳离子吸附在通过电场的粉尘上,而使粉尘获得电荷自身带电。荷电粉尘在电场力的作用下向电极性相反的电极(收尘极和电晕极)运行而沉积在电极上,从而达到粉尘和气体分离的目的。当沉积在电极上的粉尘达到一定厚度时,借助于收尘极、电晕极振打机构使粉尘落入下部的灰斗中,再经过卸灰输灰系统将粉尘排出,而净化后的气体从电除尘器出口处排入大气中[1]。
二、系统组成
图2 系统构成图
以济钢炼铁厂400m2烧结机机头电除尘系统为例,整套400m2烧结机机头电除尘自动控制系统由2台ablogix50001756-l55plc和2台上位机组成,其中1台ablogix5000plc设置了1台远程i/o站,2台上位机分别用于操作员站和工程师站(见图2)。
三、控制功能
图3 控制功能图
plc在电除尘系统中主要作用是控制所有低压设备自动运行和远程监控高压整流供电设备,对低压设备的控制一般都有现场手动和远程自动两种控制方式,所控制的设备包括阴极振打、阳极振打、灰斗卸灰阀电机、仓壁振动器、绝缘子保温梁电加热器、灰斗保温电加热器、灰斗料位计、烟气进出口温度显示、绝缘子保温梁温度显示、声波清灰装置、输灰系统、高压供电设备安全联锁以及远程监控等[2](见图3)。下面对自动控制方式进行简要介绍。
1.阴、阳极振打的控制
电除尘器的阴、阳极振打都是由电机通过传动轴将动力传给阴、阳极振打机构,使阴极线、阳极板上的积灰振落到灰斗中。plc系统通过控制器中的时间继电器控制阴、阳极振打电机按照一定的时间规律相互配合运行,并根据振打电机对应的接触器和热继电器的返回信号对电机状态进行监控和保护。阴、阳极振打的一般控制规律为:一电场的阴、阳极振打周期短,以后的各个电场振打周期逐渐加长,具体时间需根据电除尘器刚投产时的测试情况及工艺参数进行确定;以24小时为总振打周期,夜间运行周期要比白天运行周期短[3];阴、阳极振打相互配合运行,但振打周期各自独立计算,阳极振打要比阴极运行时间长、强度大;振打反馈信号只起状态监视和保护作用,不加入周期运行控制当中;为节约能源,振打运行反馈信号与高压整流供电设备有联锁,当大量振打运行时,高压整流供电设备低电压运行或停止,以实现降压振打,此方式可节约大量能源。
2.绝缘子保温梁电加热器的控制
plc系统通过绝缘子保温梁内温度检测设备检测到的温度返回信号对电加热器进行控制,以防止保温梁内温度低于露点温度,阴极绝缘子表面结露,使绝缘子表面产生爬电或沿面放电,以致电除尘器工作电压无法升上去,除尘器无法正常工作。本系统电加热器共有两路电源,可实现高、低两种功率加热,当保温梁内温度接近露点温度时,plc控制电加热器两路全部加热,尽快提高保温梁温度;当温度在露点温度以上未到设定温度时,单路加热器加热保持温度缓慢上升;当温度高于设定温度值时,停止加热。plc系统还可根据接触器和热继电器返回信号对电加热器状态进行监控和保护。
3.灰斗卸灰阀电机及仓壁振动器的控制
灰斗卸灰阀电机是用于灰斗卸灰时电动控制阀门开关的。plc对灰斗卸灰阀电机以及该灰斗仓壁振动器的自动控制是根据灰斗料位计返回信号实现的,当料位计高料位信号返回plc时,plc控制该灰斗卸灰阀电机开启,同时仓壁振动器联锁振动;当料位计低料位信号返回plc时,plc控制该灰斗卸灰阀电机关闭,同时仓壁振动器联锁停止。当不使用料位开关控制或料位开关存在故障时,也可根据经验运行时间对灰斗卸灰阀电机和仓壁振动器进行周期控制,具体时间可根据现场情况自行设定,但灰斗卸灰阀电机要与仓壁振动器有一定配合关系或一起联锁运行,否则会造成卸灰不畅甚致堵灰。
4.输灰系统的控制
本输灰系统使用的是机械干输灰方式,输灰系统由刮板机、集合刮板机、斗提机、卸灰阀电机、加湿机等组成。输灰系统的控制与皮带流程控制相似,当灰斗卸灰电机运行时,灰斗卸灰阀开启,与此一排灰斗对应的刮板机联锁运行,其他排灰斗卸灰控制同理,每台刮板机可单独运行也可同时运行。当任意一排灰斗对应的刮板机运行时,集合刮板机联锁运行,斗提机联锁运行,将除尘灰刮入卸灰仓内,当控制器接到卸灰仓料位高信号时,卸灰阀电机、卸灰仓电振、加湿机联锁运行,将除尘灰排出。
5.高压供电设备的安全联锁及远程监控
所有电除尘器的高压整流供电设备都有自己的控制器,这些控制器的网络接口都各有不同,以串口通讯为例,plc系统可通过串口采集器及与logix5000相匹配的专用模块与该控制器进行通讯,可实现plc系统对高压整流设备远程控制启动和停止,也可对高压整流设备运行状态及参数进行监视。安全联锁是专门为高压供电设备设计的程序,在远程控制高压供电设备启动时,整流变压器及三点隔离开关返回plc的安全联锁信号必须满足条件,否则高压供电设备不允许启动,此联锁对检修设备时的人身安全及设备运行都起到很大作用。
6.声波清灰装置的控制
声波清灰装置是与电除尘器相对独立的一个系统,作用是在电除尘器停运时对除尘器内部积灰进行彻底清理,运行时将积灰振到灰斗中排出。故plc对声波清灰装置的控制经常用集中手动操作方式运行,当点击运行时,声波清灰装置按照固定顺序清灰一次,并可通过时间继电器对运行时间进行控制,在规定时间内执行循环清灰。
plc控制在济钢炼铁厂400㎡烧结机机头除尘系统的应用中可以看出,plc系统可使电除尘系统自动化水平、控制性能、智能化等方面都有显著提高,现场操作和维护工作量大大减少,设备故障率也大大降低。plc控制对实现电除尘器运行的自动化和管理的智能化,改善电除尘器的运行情况,提高电除尘器的除尘效率,延长各部分构件的使用寿命及节约能源等都具有直接影响和现实意义。
一般数控机床标配有主轴,伺服轴,PLC轴也即是辅助轴。而与之相应的控制系统是CNC,PLC,变频器,伺服和电机。所以讲到PLC在数控机床上的应用就不得不联系到CNC,变频器,伺服和电机。他们是一个系统工程,一个有机的整体。
一.随着工业控制的需要及技术的发展传统的PLC(可编程可编程逻辑控制器)正在发生质的变化,有将PLC与CNC合二为一的PAC(programmable automuton cotrollor)的方向发展。使PLC不仅具有逻辑运算,算术运算,定时,计数及顺序控制,还可以提供数据传送,矩阵处理,PID调节、SSAII码操作、远程I/O、运动控制、网络通信等功能,还可以使用语言(C语言、BASIC语言)编写子程序嵌入PLC程序中运行。实质上是一种控制计算机。通过PLC提供的宏参数和CNC系统参数可在PLC和零件加工程序之间传递信息,???以完成某些特定功能。即PLC已经渗透到零件加工程序的编辑中去。
单独的PLC已经可以完成全部的CNC功能,这已经成为现实。但就目前而言,PLC主要还是在数控系统配置机床上时起一个“接口”作用,包括MST功能,诊断功能等,这种功能正在不断扩大。
PLC在数控系统的实现目前也有好几种方案:
方案一:通用PLC带数控功能
这对于需要逻辑控制又需要相对简单的位置控制的用户来说是一个很好的选择,无论是成本和开发都有很多优势,不过通用型的PLC大多没有联动和插补指令(部分产品有),并且不支持G代码,无法与CAD软件进行接口。
方案二:专用的数控系统
这种系统有很多使用PLC的平台加DSP加FPGA实现,的这种系统可以与CAD软件无缝联接,从CAD导出来的G代码在经过编缉或者不需要编缉下载到控制器内就可以做出各种对应的动作出来。该种系统对于多轴联动控制和插补G代码均有很强的支撑能力,同时一般带有显示,可以在运行时同步在显示屏上显示运动的轨迹。
方案三:IPC+数控板卡
这是国内数控厂商的主要形态,有灵活性高的优点,但很多系统不支持标准的G代码,而是要用户使用C、C++语言或者VC去编写对应的控制程序,由板卡厂商提供函数库。当然目前大多数情况下是由数控厂商代用户完成这一部分的编程。
这种开发方式的优点是显而易见的,厂商的开发成本低,灵活度高,但是需要厂商提供相当多的技术支持,如果客户数量大后很难有足够的支持能力,所以这类厂商大多都在开发通用的数控平台,并仍然使用IPC平台在上面开发通用型的数控系统。
在中、数控机床中,PLC是CNC装置的重要组成部分。其作用是:接收来看零件加工程序的开关功能信息(辅助功能M、主轴转速功能S、刀具功能T)、机床操作面板上的开关量信号及机床侧的开关量信号,进行逻辑处理,完成输出控制功能,实现各功能及操作方式的联锁。
PLC有两种类型,即内装型和独立型。
PLC除了在CNC中使用外,还广泛用于治金、机械、石油化工、能源交通乃至娱乐等各行业。
1.PLC的应用类型
(1)顺序控制和开关逻辑控制类型。这是基本控制方式,已取代了传统的继电器逻辑控制,用于单机、多机qunkong和生产自动线。它首先对输入的开关量或模拟量进行采样,然后按用户编制的顺序控制程序进行运算,再通过输出电路去驱动执行机构实现顺序控制。
(2)一个具有PID(比例、微分、积分)控制能力的PLC可用于过程控制,把变量保持在设定值上。
(3)组合数字控制类型。在机械加工中,将具有数据处理功能的PLC和CNC组成一体,实现数字控制。
(4)组成多级控制系统类型。在分层分布式控制的全自动化系统,如PMC、FMS、CIMS中,基层由中小型PLC和CNC等控制设备组成,中层由大型PLC进行单元控制与监督,上层由上位计算机做总体管理。PLC之间、PLC与上级计算机之间采用快速光纤数字通信。为适应多任务、多微处理器并进处理,实现实时控制,协调梯形图和BASIC程序之间的相互关系,以及位、字处理和I/O中断处理,还增设有联机文件管理和对执行出错的恢复等功能。
(5)控制机器人的类型。选用PLC可对具有3-6个自由度的机器人进行控制。
2.PLC在位置控制中的应用。PLC制造厂商提供驱动步进电动机或伺服电动机的单轴或多轴位置控制模块。用户只需通过PLC向位置控制模块设置参数及发出某种命令,位置控制模块即可根据来自现场的监测信号和PLC的命令来调整控制输出,移动一轴或数轴到达目标位置,实现准确定位。当每个轴移动时,位置控制模块能使其保持适当的速度和加速度,确保运动平滑。
位置运动的编程可用PLC语言完成,通过编程器输入。用程序设定速度和加速度参数,控制系统可自动实现阶梯式加减速。可多点定位,并有原点补偿和间隙补偿功能,提高定位精度。可进行手动操作,实现高速点动、低速点动或微动。
PLC的位置控制,特别适用于机床的点位直线伺服控制,常称为辅助坐标运动控制
CNC装置和机床之间的信号传送处理两个过程:
(一)、CNC装置→机床:
CNC装置®CNC装置的RAM ®PLC的RAM中。
PLC 软件对其RAM中的数据进行逻辑运算处理。
处理后的数据仍在PLC的RAM中,
对内装型PLC,PLC将已处理好的数据通过CNC的输出接口送至机床;
对独立型PLC,其RAM中已处理好的数据通过PLC的输出接口送至机床。
(二)、机床→CNC装置
对于内装型PLC,信号传送处理如下:
从机床输入开关量数据®CNC装置的RAM ® PLC的RAM。
PLC的软件进行逻辑运算处理。
处理后的数据仍在PLC的RAM中,同时传送到CNC装置的RAM中。
CNC装置软件读取RAM中数据。
对于独立型PLC,输入的步,数据通过PLC的输入接口送到PLC的RAM中,然后进行上述的第2步,以下均相同
二.接下来是运动过程控制
伺服或者变频器接受CNC,PLC命令,分别控制电压进而控制转速,控制频率来控制转速。
联系到主轴驱动系统和进给伺服系统及执行元件电机等。
1,比较一下变频主轴和伺服主轴的区别。伺服主轴的起停性能好,低速扭矩大,在进行很好的速度控制还能进行较准确的主轴停止位置的控制(主轴定位),但价格较高。
而一般的变频主轴只能进行主轴的旋转速度的控制,且它的低速度扭矩小,电机不能在较低的速度下进行工作,如需要进行低速加工则要通过减速箱来实现,起停时间一般都较长。
这是两种不同的控制系统,前者是随动系统,后者是调速系统。
还有一般的数控机床大多会用变频主轴,一是因为相对而言价格较低,二是容易实现高速和大功率.当然,也满足大多数加工要求.
另变频主轴也可进行对主轴的定位控制,刚性功丝等也可实现.主要是看所选主轴电机及变频器. 主轴电机带编码器,变频器加PG反馈脉冲卡就可实现.当然效果肯定是没有伺服主轴来得好.国内中心机大多这样做。
2.变频技术: 简单的变频器只能调节交流电机的速度,这时可以开环也可以闭环要视控制方式和变频器而定,这就是传统意义上的V/F控制方式。现在很多的变频已经通过数学模型的建立,将交流电机的定子磁场UVW3相转化为可以控制电机转速和转矩的两个电流的分量,现在大多数能进行力矩控制的品牌的变频器都是采用这样方式控制力矩,UVW每相的输出要加摩尔效应的电流检测装置,采样反馈后构成闭环负反馈的电流环的PID调节;这样可以既控制电机的速度也可控制电机的力矩,而且速度的控制精度优于v/f控制,编码器反馈也可加可不加,加的时候控制精度和响应特性要好很多。
伺服系统:(1)伺服驱动器 在发展了变频技术的前提下,在驱动器内部的电流环,速度环和位置环(变频器没有该环)都进行了比一般变频更jingque的控制技术和算法运算,在功能上也比传统的伺服强大很多,主要的一点可以进行jingque的位置控制。通过上位控制器发送的脉冲序列来控制速度和位置(当然也有些伺服内部集成了控制单元或通过总线通讯的方式直接将位置和速度等参数设定在驱动器里),驱动器内部的算法和更快更jingque的计算以及性能更优良的电子器件使之更优越于变频器。(2)电机方面 伺服电机的材料、结构和加工工艺要远远高于变频器驱动的交流电机(一般交流电机或恒力矩、恒功率等各类变频电机),也就是说当驱动器输出电流、电压、频率变化很快的电源时,伺服电机就能根据电源变化产生响应的动作变化,响应特性和抗过载能力远远高于变频器驱动的交流电机,电机方面的严重差异也是两者性能不同的根本。就是说不是变频器输出不了变化那么快的电源信号,而是电机本身就反应不了,所以在变频的内部算法设定时为了保护电机做了相应的过载设定。当然即使不设定变频器的输出能力还是有限的,有些性能优良的变频器就可以直接驱动伺服电机!
3.还有交流伺服和交流变频的区别其实只在于控制指标,包括稳态精度和动态性能。
先说稳态精度:交流伺服的执行单元是永磁同步电机(也有人把无刷直流系统叫做交流伺服,其原理如图:
但电机大体上与同步电机差不多,只是控制方法不同),它的特点是同步,就是说,当控制电机定子磁场的强度和矢量方向后,外力是难以改变转子(动子)的相对位置的,在额定力矩以内,无论外力怎样变化,转子都会自动产生一个回归力,一旦扰动撤消,转子矢量即回归原位。变频器不然,电机转子对定子的相对位置没有记忆,扰动后不能回位。即使加装位置传感器做位置闭环,变频器仍不能和伺服相比。原因是,在位置-速度-力矩三闭环中,变频器实现速度闭环指标比伺服差多了。不过,现在新出来的普通异步电机的伺服控制方案中,采用磁场行波控制,异步电机伺服控制也不是难事,指标也很高。不过驱动
- 铜川西门子S7-200代理商 2024-05-08
- 西安西门子S7-200代理商 2024-05-08
- 陕西西门子S7-200代理商 2024-05-08
- 拉萨西门子S7-200代理商 2024-05-08
- 西藏西门子S7-200代理商 2024-05-08
- 临沧西门子S7-200代理商 2024-05-08
- 普洱西门子S7-200代理商 2024-05-08
- 丽江西门子S7-200代理商 2024-05-08
- 昭通西门子S7-200代理商 2024-05-08
- 保山西门子S7-200代理商 2024-05-08
- 玉溪西门子S7-200代理商 2024-05-08
- 曲靖西门子S7-200代理商 2024-05-08
- 昆明西门子S7-200代理商 2024-05-08
- 云南西门子S7-200代理商 2024-05-08
- 黔南州西门子S7-200代理商 2024-05-08