全国服务热线 15221406036

临沧西门子S7-200代理商

发布:2023-08-31 16:45,更新:2024-05-08 07:10

临沧西门子S7-200代理商

1 引言
传统的加热炉电气控制系统普遍采用继电器控制技术,由于采用固定接线的硬件实现逻辑控制,使控制系统的体积增大,耗电多,效率不高且易出故障,不能保证正常的工业生产。随着计算机控制技术的发展,传统继电器控制技术必然被基于计算机技术而产生的PLC控制技术所取代。而PLC本身优异的性能使基于PLC控制的温度控制系统变的经济高效稳定且维护方便。这种温度控制系统对改造传统的继电器控制系统有普遍性意义。

2 加热炉温度控制系统基本构成
加热炉温度控制系统基本构成入图1所示,它由PLC主控系统、移相触发模块整、流器SCR、加热炉、传感器等5个部分组成。该加热炉温度希望稳定在100℃工作(其它工作温度同样可以照此方法设计)。




图1 加热炉温度控制系统基本组成

加热炉温度控制实现过程是:首先传感器将加热炉的温度转化为电压信号,PLC主控系统内部的A/D将送进来的电压信号转化为PLC可识别的数字量,然后PLC将系统给定的温度值与反馈回来的温度值进行处理,给移相触发模块,再给三相整流电路(SCR)一个触发脉冲(既控制脉冲),这样通过SCR的输出我们控制了加热炉电阻丝两端的电压,也既加热炉温度控制得到实现。其中PLC主控系统为加热炉温度控制系统的核心部分起重要作用。

3 PLC控制系统
3.1 PLC控制系统的硬件配置
在加热炉温度控制系统中PLC采用日本三菱公司FX2N,其硬件采用模块化设计,配合了多种特殊功能模块及功能扩展模块,可实现模拟量控制、位置控制等功能。该系列PLC可靠性高,抗干扰强、配置灵活、。本温度控制系统中PLC我们选择FX2N-48MR-001型,它与外部设备的连接如图2、表1所示。




图2 PLCI/O接线图
表1 PLC I/O地址分配表




3.2 流程设计
根据加热炉温度控制要求,本系统控制流程图如图3所示。




图3 加热炉控制流程图

3.3 控制算法
由于温度控制本身有一定的滞后性和惯性,这使系统控制出现动态误差。为了减小误差提高系统控制精度,采用PID控制算法,另外考虑到系统的控制对象,采用增量型PID算法。
△V(n)=U(n)-U(n-1)




+


[e(n)-2e(n-1)+e(n-2)]}=KP{△e(n)+


e(n)+


[△e(n)-△e(n-1)]}
式中e(n)、e(n-1)、e(n-2)为PID连续三次的偏差输入。△e(n)、△e(n-1)为系统连续两次执行的误差。KP为比例放大系数T、TI、TD分别为采样周期、积分时间、微分时间。
当加热炉刚启动加热时,由于测到的炉温为常温,sp-pv=△U为正值且较大,△U为PID调节器的输入,此时PID调节器中P起主要作用,使SCR为大电压给加热炉加热。当加热炉温度达到100℃以上时,sp-pv=△U为负值,经PID调节,使SCR输出电压减小,加热炉温度降低。当温度正好达到100℃时,△U为零PID不调节,此时SCR输出的电压正好平衡加热炉消耗的热量,系统达到动态平衡。
3.4 K型热电偶分度电压拟合
(1)根据具体问题,确定拟合多项式的次数为n。
(2)由公式
Sk=


(k=0,1,2, ……2n)
tr= yi


(r=0,1,2, ……n)
计数出Sk与Tr
(3)写出正规方程




(4)解正规方程组 求出a0,a1,…,an
(5)写出拟合公式多项式Pn(X)=


一次多项式也叫作线性拟合。由上述方法可拟合出K分度电压随温度变化公式为:V=0.04T(其中V为电压,T为温度)。此拟合公式是在温度从0℃到120℃之间变化的近似公式,因此正规方程只用到S0、S1、S2拟合的多项式次数为n=1,电压随温度的变化可近似为线性变化。如果温度变化范围比较大,则电压随温度变化为非线性变化,上述电压随温度变公式需要重新拟合,拟合多项式的次数也必然大于2。
3.5 系统调试
系统调试分为两大步骤,一是系统软件调试;二是系统硬件调试。
(1)系统软件调试。系统软件调试是在PC机上进行,我们将PLC控制程序输入PC机后,根据运行要求,设定若干数字开关量,模拟量,对系统的每一个功能进行检测测试并在此基础上不断完善程序以达到系统要求。
(2)系统硬件调试。相应的系统硬件也是在实验室里进行,用一个设备来摸仪控制对象。首先检查设备的诸个单元是否合乎要求,其次将软件和硬件结合起来进行测试。并不断完善PLC软硬件的配置以达到优的结果。

4 结束语
加热炉温度控制系统采用成熟的PLC技术和电力电子技术,采用软硬件结合,较好的解决了传统加热炉温控系统中出现的问题。针对我国大部分的加热炉用户来说本系统将是一个比较理想的温控系统。

1 概述

随着机电一体化技术的发展,对系统的可靠性要求越来越高,PLC具有控制可靠、组态灵活、体积小、功能强、速度快、扩展性好、维修方便等特点,在机床电气控制中获得了广泛的应用。本文简要介绍了采用F1—40MR型PLC改造卧式镗床电气控制线路的应用实例。

2 卧式镗床继电器控制工作原理简介

图1是卧式镗床继电器控制电路图。ZQA、FQA分别是正转、反转起动按钮,ZSA、FSA分别是正转、反转点动按钮;TA是主轴停止按钮。卧式镗床的主轴电机是双速异步电动机,中间继电器ZJ和FJ控制主轴电机的启动和停止,接触器ZC和FC控制主轴电机的正反转;接触器1DSC、2DSC和时间继电器SJ控制主轴电机的变速,接触器DC用来短接串在定子回路的制动电阻。1JPK、2JPK和1ZPK、2ZPK是变速操纵盘上的限位开关,1HKK、2HKK是主轴进刀与工作台移动互锁限位开关。SDJ为速度继电器,GSK控制主轴高速运转,热继电器RJ在电机过热时断开供电线路。





图1 卧式镗床继电器控制电路图

3 用PLC改造卧式镗床的电气控制线路

根据原有的继电器控制电路图来设计PLC控制梯形图,以实现卧式镗床的PLC控制改造。这种方法没有改变系统的外部特性,但却克服了机械动作时中间继电器可靠性低、维修困难等缺点。对于操作人员来说,除了控制系统的可靠性提高以外,改造前后对系统的操作没有什么区别,它们不用改变长期形成的操作习惯。这种设计方法一般不需要改动控制面板和它上面的器件,因此可以减少硬件改造的费用和工作量。

图2和图3分别是实现与图1相同功能的PLC电气控制系统的外部接线图和梯形图






 



图2 PLC电气控制系统外部接线图




图3 PLC电气控制系统梯形图

在控制主轴电机正反转的继电器电路中,为了防止控制正反转的两个接触器(如图1中的ZC和FC)同时动作造成三相电源短路,设置了接线复杂的连锁电路,即将某一接触器的常闭触点与另一个接触器的线圈相串联,在梯形图中也设置了相应的连锁电路,但是它只能保证PLC输出模块上两个对应的硬件继电器不同时动作。如果因主电路电流过大或接触器质量不好,某一接触器的主触头被断开主电路时产生的电弧熔焊,使其线圈断电后主触间仍然接通,这时如果另一接触器的线圈通电,仍将会造成三相电源短路事故。为了防止出现这种情况,图2中在PLC外部增设了连锁电路。假设接触器ZC主触点被电弧熔焊,这时与FC线圈串联的ZC辅助常闭触点断开,因此FC的线圈不可能得电,进一步从硬件上提高系统的可靠性。

图1中ZC、FC、1DSC、2DSC都要受TA、1ZPK、1JPK、ZC和FC的触点并联电路的控制,在梯形图中设置了与上述并联控制电路对应的辅助继电器M202,它类似于图1继电器电路中的中间继电器。


联系方式

  • 地址:上海松江 上海市松江区石湖荡镇塔汇路755弄29号1幢一层A区213室
  • 邮编:201600
  • 联系电话:未提供
  • 经理:聂航
  • 手机:15221406036
  • 微信:15221406036
  • QQ:3064686604
  • Email:3064686604@qq.com