6ES7222-1HF22-0XA8实体经营
6ES7222-1HF22-0XA8实体经营
本文介绍了在熔盐炉自动系统中,采用Allen-Bradley
ControlLogix双CPU的PLC控制器,以软件方式实现CPU冗余控制。这是一种花钱少、效果好的提高系统可靠性的有效手段。
PLC是现代工业的三大支柱之一,是可靠性高、应用非常广泛的工业控制产品。在中大型模块化的PLC产品中,CPU模块(中央处理器)是PLC的中心。一些重大的工业生产线往往要求连续运行不能停顿,而可靠性再高的PLC也不能保证故障为零,因此,双CPU的冗余控制是一种满足连续生产要求、提高系统可用性的有效手段。下面以熔盐炉自控系统为实例详述双CPU冗余控制的实现方法。
一、熔盐炉自动系统综述
熔盐炉自控系统是一水硬铝管道化溶出生产线上的重要环节,控制熔盐的加热和循环,用熔盐的热量去循环加热铝矿石浆。铝矿石浆的加热至关重要,影响终产品—氧化铝的质量和产量,因此,熔盐的温度控制和循环控制非常重要。
由于熔盐炉系统在管道化工程中的重要性,同时考虑到熔盐是一种活跃的化学品,在不同的温度下有不同的形态,低温下凝固,高温下不稳定会发生化学反应,从而腐蚀管壁甚至于爆炸,所以安全、可靠、操作简便和自动化管理是系统设计的关键,因此考虑用一套双CPU冗余的PLC、两套工控机、高质量的传感器、变送器和执行机构来控制两台1200万大卡的熔盐炉、一台盐泵、一组盐阀、一个熔盐槽和其他相关设备,实现熔盐的加热和循环过程自动化、计算机操作、监控和管理的自动化控制。该系统如图1所示。
控制器PLC、工控机(包括显示器)、通讯网络和电源及关键测试点等系统中的重要部件均采用冗余结构,两套工控机和大屏幕显示器组成的两套监控操作管理台并行运行;两条冗余的ControlNet高速通讯网络同时传送数据;两套直流电源同时向控制器PLC、变送器和开关量输入模块供电,关键测试点同时设置两个传感器测试数据。
冗余设计使系统关键部件的可靠性提高了一倍,而使系统的整体可靠性大大的提高。
二、双CPU的PLC控制器
PLC控制器是系统控制的中心,采集系统的全部工况信号,实时控制相关的设备动作;同时监视生产过程参数和设备运行状态,当危险工况出现时,及时发出声光报警,当极限工况出现时,联锁保护设备,保障生产过程安全。为此,我们选择了以产品可靠性高著称的罗克韦尔自动化公司的新一代控制平台:A-B ControlLogix系列,同时考虑采用双CPU模块冗余,进一步提高系统可靠性,避免因故障出现所引起的生产停顿或安全事故。
三、两种双CPU冗余方式的比较
ControlLogix提供有两种CPU冗余解决方法,一种为纯硬件冗余,另一种为软件冗余。
硬件冗余的方法,是将两个CPU模块插在不同的两个机架上,每个机架上除了CPU模块,还要有通讯模块CNBR、热备模块SRM和两个热备模块间的连接光缆,如图2所示。
软件冗余,是将两个CPU模块插在同一个框架上,利用背板通讯,进行冗余控制,如图3所示。
从以上可以看出,纯硬件冗余的方式硬件投入较多,成本开支较大大。而软件冗余,只需增加一块CPU模块,成本增加很少,因为一般像CPU这种PLC的心脏,厂家都会配有备件,用备件来实现冗余控制,既提高了系统的可靠性和可维护性(可做到在线维护,不影响生产线运行),又不会显著增加成本开支。
单纯从可靠性方面分析,纯硬件的冗余较之软件冗余并无优势。因为增加了较多的部件、模块,这些部件和模块的故障,也会影响系统的可靠性。例如,当两个热备模块之间的连接光缆出现故障,同样会使冗余控制失效。而软件冗余,只增加了一块CPU模块,而两个CPU模块的同时故障率几乎为零。
纯硬件冗余的优点之一,就是不需要软件进行专门的编程,CPU的状态监视和控制权的转移是由两个热备模块来完成的。而软件冗余中两个CPU模块的状态监视和控制权的转移是通过软件编程解决的。因此,软件冗余编程相对比较复杂,工作量较大。
综合考虑以上因素,本熔盐炉自动系统采用软件方式实现PLC的双CPU冗余控制。两块CPU模块同时在系统中运行,一块运行于主控模式,另一块运行于热备份模式。当其中任一块CPU发生故障时另一块CPU立即监视到并发出报警,自动将正常的CPU投入主控模式。CPU的无扰动切换,使系统一直受控,确保了安全,同时,使管道化生产线一直处于正常运行的良好工况中。
四、软件实现
CPU冗余控制的软件实现编程主要从下面两方面考虑:
1、控制权的裁决和转移
两块CPU同时在线运行,一块处于主控制模式,另一块处于热备模式。拥有主控制权的CPU具有输出控制权,而热备CPU同时采集数据和保持通讯连接,但输出被禁止。
两个CPU模块互相监视对方的运行状态和通讯情况,一旦发现对方故障,立即发出报警,通过ControlNet网,传送给上位工控机,在操作管理台上显示报警。如果是主控CPU模块故障,热备CPU模块自动获得主控制权。控制权的裁决和转移的软件框图如图4所示。
2、两块CPU模块的同步控制
由于热备CPU随时准备着,一旦主CPU故障,就立即获取主控制权而成为主控CPU,因此,主CPU必须将自己的信息随时传递给热备CPU,而热备CPU必须跟踪主CPU的变化,与主CPU保持同步,这样,在两块CPU模块进行控制权的转移时,实现无扰动切换。CPU模块的同步控制程序框图如图5所示。
五、结束语
用A-B ControlLogix双CPU的PLC控制器实现的熔盐炉自动系统,已于2001年底开始成功运行于中国铝业河南分公司,运行情况良好,满足了一水硬铝管道化溶出氧化铝生产线的工艺要求。
我们的体会是,ControlLogix双CPU冗余控制的软件方式实现是一种经济、有效的方法,它成本支出不大,却能使系统的可靠性大大提高。
另外,双CPU冗余控制时,如何利用Map命令,只将具有主控制权的CPU数据通过ControlNet网传送给其他控制设备,是值得进一步研究的。
引言
在国内,小水电综合自动化正日益得到重视,因为传统落后的控制方式使每个小水电都不得不依靠值班人员在现场运行,不仅浪费人力物力资源,而且不利于小水电的大量开发。本控制装置是专门为中小型水轮发电机组自动控制而设计的。这一系统充分考虑了我国目前小型水电站操作的特点,替代原继电接触器控制系统,已在我院模拟电站运行良好。下面以混流式机组为例,机组配用T-100型调速器,简要说明用PLC实现水轮机组自动控制的过程。
2 设备工艺特点及控制要求
2.1 电站的自动控制工程内容
(1) 发出命令脉冲以后,机组的起动、并网、调节负荷、停机,发电转为调相运行及调相转发电运行等操作,都需自动完成;
(2) 能自动保持机组的正常工作条件,如速度调整和励磁调整,轴承的润滑和冷却,调相的压水等等;
(3) 水轮机前闸门及机组附属设备和公共设备的自动操作;
(4) 机组发生事故时,自动停机并将机组从系统中切除;当机组发生不正常状态时,自动发出报警信号,并采取预定的措施以恢复正常工作。
2.2 机组控制流程
机组的自动控制包括机组润滑系统、冷却系统、制动系统及调相压水系统的自动控制,机组的启动、停机,机组由调相转发电、由发电转调相等工况的转换,机组的保护与信号等。
下面分别给出机组起动、停止、发电转调相操作程序框图,如图1、2、3所示。
图1 机组起动操作程序框图
图2 机组正常停机操作程序流程图
图3 机组由发电转调相操作程序流程图
3 系统设计
3.1 硬件设计
(1) 输入和输出点分配及辅助继电器M的安排见附表所示。
附表 输入和输出点分配及主要辅助继电器M的安排表
根据I/O的使用点数,并考虑将来的发展需要,确定采用三菱FX2N-128MR型PLC。
(2) PLC接线图
对于PLC接线,见图4。PLC的输入点一律用常开触头,负载统一采用110V直流电源。调相水位信号装置41DSX及导水叶剪断销信号装置41JDX需另接220V交流电源(此部分电路略),将其接点接入PLC的输入点。取消频差继电器CLJ的比较回路,其接点用开关模拟替代。
图4 PLC接线图
3.2 程序设计
梯形图程序如图5所示。
图5 梯形图(a)
图5 梯形图(b)
图5 梯形图(c)
4 结束语
PLC用于模拟小型水电站水轮机组自动控制系统运行以来,其性能比原来的继电接触器式控制优越得多。同时由于操作方便,安全可靠,各种信号显示直观,故障率大大降低,几乎实现了控制系统lingguzhang。该装置有良好的开拓市场