西门子模块6ES7253-1AA22-0XA0型号大全
西门子模块6ES7253-1AA22-0XA0型号大全
1、引言
近年来可编程序控制器(PLC)以及变频调速技术日益发展,性能价格比日益tigao,并在机械、冶金、制造、化工、纺织等领域得以普及和应用。为满足温度、速度、liuliang等工艺变量的控制要求,常常要对这些模拟量进行控制,PLC模拟量控制模块的使用也日益广泛。
通常情况下,变频器的速度调节可采用键盘调节或电位器调节方式,但是,在速度要求根据工艺而变化时,仅利用上述两种方式则不能满足生产控制要求,因此,我们须利用PLC灵活编程及控制的功能,实现速度因工艺而变化,从而保证产品的合格率。
2、变频器简介
交流电动机的转速n公式为:
式中:f—频率;
p—极对数;
s—转差率(0~3%或0~6%)。
由转速公式可见,改变三相异步电动机电源频率,可以改变旋转磁通势的同步转速,达到调速的目的。额定频率称为基频,变频调速时,可以从基频向上调(恒功率调速),也可以从基频向下调(恒转距调速)。因此变频调速方式,比改变极对数p和转差率s两个参数简单得多。同时还具有很好的性价比、操作方便、机械特性较硬、静差率小、转速稳定性好、调速范围广等优点,因此变频调速方式拥有广阔的发展前景。
3、PLC模拟量控制在变频调速的应用
PLC包括许多的特殊功能模块,而模拟量模块则是其中的一种。它包括数模转换模块和模数转换模块。例如数模转换模块可将一定的数字量转换成对应的模拟量(电压或电流)输出,这种转换具有较高的精度。
在设计一个控制系统或对一个已有的设备进行改造时,常常会需要对电机的速度进行控制,利用PLC的模拟量控制模块的输出来对变频器实现速度控制则是一个经济而又简便的方法。
下面以三菱FX2N系列PLC为例进行说明。同时选择FX2N-2DA模拟量模块作为对变频器进行速度控制的控制信号输出。如图1所示,控制系统采用具有两路模拟量输出的模块对两个变频器进行速度控制。
为变频器的控制及动力部分,这里的变频器采用三菱S540型,PLC的模拟量速度控制信号由变频器的端子2、5输入。
3.1系统中PLC模拟量控制变频调速需要解决的主要问题
(1)模拟量模块输出信号的选择
通过对模拟量模块连接端子的选择,可以得到两种信号,0~10V或0~5V电压信号以及4~20mA电流信号。这里我们选择0~5V的电压信号进行控制。
(2)模拟量模块的增益及偏置调节
模块的增益可设定为任意值。然而,如果要得到大12位的分辨率可使用0~4000。如图3,我们采用0~4000的数字量对应0~5V的电压输出。当然,我们可对模块进行偏置调节,例如数字量0~4000对应4~20mA时。
(3)模拟量模块与PLC的通讯
对于与FX2N系列PLC的连接编程主要包括不同通道数模转换的执行控制,数字控制量写入FX2N-2DA等等。而重要的则是对缓冲存储器(BFM)的设置。通过对该模块的认识,BFM的定义如附表。
从附表中可以看出起作用的仅仅是BFM的#16、#17,而在程序中所需要做的则是根据实际需要给予BFM中的#16和#17赋予合适的值。其中:
#16为输出数据当前值。
#17:b0:1改变成0时,通道2的D/A转换开始。
b1:1改变成0时,通道1的D/A转换开始
(4)控制系统编程
对于上例控制系统的编写程序如图4所示。
在程序中:
1)当M67、M68常闭触点以及Y002常开触点闭合时,通道1数字到模拟的转换开始执行;当M62、M557常闭触点以及Y003常开触点闭合时,通道2数字到模拟的转换开始执行。
2)通道1
将保存个数字速度信号的D998赋予辅助继电器(M400~M415);
将数字速度信号的低8位(M400~M407)赋予BFM的16#;
使BFM#17的b2=1;
使BFM#17的b2由1→0,保持低8位数据;
将数字速度信号的高4位赋予BFM的16#;
使BFM#17的b1=1;
使BFM#17的b1由1→0,执行通道1的速度信号D/A转换。
3)通道2
将保存第二个数字速度信号的D988赋予辅助继电器(M300~M315);
将数字速度信号的低8位(M300~M307)赋予BFM的16#;
使BFM#17的b2=1;
使BFM#17的b2由1→0,保持低8位数据;
将数字速度信号的高4位赋予BFM的16#;
使BFM#17的b0=1;
使BFM#17的b0由1→0,执行通道2的速度信号D/A转换。
4)程序中的K0为该数模转换模块的位置地址,在本控制系统中只用了一块模块,因此为K0,假如由于工艺要求控制系统还要再增加一块模块,则新增模块在编程时只要将K0改为K1即可。
(5)变频器主要参数的设置
根据控制要求,设置变频器的运行模式为外部运行模式,运行频率为外部运行频率设定方式,Pr.79=2;模拟频率输入电压信号为0~5V,所以,Pr.73=0;其余参数根据电机功率、额定电压、负载等情况进行设定。
3.2注意事项
(1)FX2N-2DA采用电压输出时,应将IOUT与COM短路;
(2)速度控制信号应选用屏蔽线,配线安装时应与动力线分开。
4、结束语
上述控制在实际使用过程中运行良好,很好的将PLC易于编程与变频器结合起来,当然不同的可编程序控制器的编程和硬件配置方法也不同,比如罗克韦尔PLC在增加D/A模块时,只要在编程环境下的硬件配置中添加该模块即可。充分利用PLC模拟量输出功能可以控制变频器从而控制设备的速度,满足生产的需要。
1 简介
生物质高温空气气化技术是燃料利用和能源供应领域内的一项高新技术,对tigao资源利用率、缓解能源危机和改善环境质量具有重要意义。生物质高温空气气化系统主要由高温空气预热器、卵石床气化器、余热锅炉、气体湿式净化装置、汽轮机等动力供应装置及空气压缩机等辅助装置组成。高温低氧弥散燃烧为核心技术的高温空气发生器是生物质高温空气气化技术研究实验研究系统的关键部件之一,其主要功能是产生温度为 800-1500℃的空气。四通阀的周期切换是高温空气发生器正常工作的关键,本文介绍采用可编程序控制器(HLC)实现四通阀周期切换的控制方案。
2 高温空气发生器的组成及工作原理
高温空气发生器是获得高温空气的关键设备,其关键技术在于采用了一对蜂窝陶瓷蓄热体,该蓄热体具有比表面积大、传热性能好、阻力小、能实现极限余热回收等特点,是一种紧凑的高效换热器。高温空气发生器主要由燃烧室、燃烧器、蓄热室、四通阀、鼓风机及排烟机组成,其中燃烧室、燃烧器、蓄热室各两个,呈左右对称布置。高温空气发生器工作原理如图1所示。
高温空气发生器工作时,燃料在A侧燃烧室内燃烧,产生1300℃左右的高温烟气,高温烟气通过蓄热室时,与蜂窝陶瓷蓄热体进行热交换,蓄热体被加热,烟气则冷却到120℃左右经四通阀排人大气中;与此同时,常温空气经四通阀后进入B侧的蓄热室,吸收蓄热室内高温蓄热体中的热量,迅速升温到1000℃以上,加热后的高温空气分成两部分,其中大部分输入到卵石床气化器中作气化剂,另一部分用于A侧燃烧室燃气的燃烧。经过一段时间后进行切换,B侧燃烧,A侧产生高温空气,切换周期为15~30s。通过这种交替运行方式,实现极限余热回收和燃烧空气的高温预热。
3 控制方案
四通阀的周期切换是高温空气发生器正常工作的关键,四通阀的切换采用齿轮齿条摆动气缸驱动,由压缩空气推动气缸产生旋转力矩,使四通阀在1-1,2-2位置之间进行切换,压缩空气则由电磁阀S1进行控制;A,B两侧烧嘴燃气和空气由电磁阀S2-S5进行控制,其控制系统如图1所示。
3.1 控制要求
根据工艺要求,四通阀切换的同时,要求A,B两侧的烧嘴燃气和空气同步切换,当系统启动时,四通阀在1-1位置时,A侧燃烧,B侧产生高温空气;为了保证高温空气清洁,尽可以能减少空气中含烟量,燃气阀应先关闭,四通阀切换的同时另一侧点火燃烧;因此,设计燃料阀供气时间为28s,四通阀的切换时间为 30s。A侧烧嘴28s后关闭,2s后四通阀切换到2-2位置,B侧开始燃烧,A侧产生高温空气;B侧烧嘴28s后关闭,2s后四通阀切换到1-1位置,A侧开始燃烧,并重复上述过程,四通阀和燃料阀切换工作时序如图2所示。
3.2 PLC的选择
由于四通阀的切换控制是一个小型的逻辑控制系统,没有特殊的要求,因此选用一般小型PLC就可满足控制要求,其控制接线如图3所示。根据控制功能要求和I/0端子编号编制的四通阀切换控制梯形图如图4所示。
3.3 工作过程
当起动开关合上时,X400接点接通,Y430线圈得电,电磁阀S1打开,四通阀切换至1-1位置;Y431线圈得电,电磁阀S2,S4打开,高温空气发生器A侧点火燃烧。与此同时,Y431常开触点闭合,T552开始计时,28s后T552常闭触点打开,Y431线圈失电,电磁阀S2,S4关闭,A侧停止燃烧。30s后,T551的常闭触点打开,T550常闭触点打开,线圈Y430失电,电磁阀S1关闭,四通阀切换至2-2位置;Y430常开触点闭合,Y432线圈接通,电磁阀S3,S5打开,B侧点火燃烧;同时Y432常开触点闭合,巧52开始计时,28s后T552常闭触点打开,Y432 线圈失电,电磁阀S3,S5关闭,B侧停止燃烧。30s后完成一个循环过程,并周而复始地重复上述过程。其控制命令程序如表1所示。
1 引言
随着国民经济的发展,对电力系统、电厂的要求越来越高。对于水电厂来说,装备一套结构合理、功能完善、可靠性高的现地控制单元,是水电厂tigao安全生产水平,实现“无人值班”的重要环节。
2 原有设备问题分析
2.1 原有现地单元
原有现地控制单元包含一面盘柜,柜内安装了Modicon984-145型PLC,参见图1。该PLC属于凑型的PLC,基本的控制和数据采集功能都可以实现;与一体化工控机以及上位机采用了MB+网方式通信,该PLC仅具有一个RS-233口,协议固定为MODBUS,规约只能是MODBUS从站。
图1 原有盘柜布置图
2.2 原系统存在问题
(1) 整个电站的通信采用一个MB+网,当通信线路一个地方发生故障可能会影响整个电站的运行,对电厂的安全运行形成隐患;
(2) 对外通信扩展不方便,许多外部设备的信息无法采集到PLC中去;
(3) 随着外部控制设备的更新改造,所需测控点数增加,原有配置已无法满足要求;
(4) 当地显示界面即一体化工控机故障率比较高;
(5) 备品备件订货越来越困难。
为此需对现地控制单元进行更新改造。
3 技改方案分析
结合水电厂现场改造的经验,提出如下三个现地控制单元改造方案以供比选。
(1) 全部更新
把原有设备全部更新,改用Quantum PLC。全部更新,原有设备要全部报废,这样改造的成本较高,同时现场配线、安装等工作量都较大,改造周期较长。
(2) 扩展DI/DO新屏
扩展一面屏,增加开关量输入和输出点数,PLC仍采用Modicon984,和上位机通信仍需采用MB+方式。由于仅仅是对原有系统进行扩充,增加了相关的点数,整个系统的功能特点以及可靠性等并没有过tigao,这种方案改造的意义不大。
(3) 扩展PLC新屏
原有屏柜保持,新扩展一面屏柜,采用Quantum PLC,Quantum PLC与原有PLC采用MB+网进行通信;与上位机通信方式改用以太网通信,即PLC直接上以太网,在新增屏柜上安装一台通信管理机。
在充分利用原有设备的基础上,增加了一套Quantum PLC,数据处理能力得到很大的tigao,Quantum PLC具有无与伦比的网络连接能力,特别是应用于MODBUS PLUS网络的站间通讯(Peer Cop)技术,其快速、准确、可靠的性能充分满足功能要求,在新盘柜和旧盘柜之间即采用MB+网进行通迅,高速MB+网络的通讯功能也得到了充分的利用,上位机的通迅改用了以太网方式,tigao了速度和可靠性,同时改造过程中工作量也增加的不是很多,具有可行性。
4 系统设计
系统配置方案如图2所示。在该方案中,原有Modicon984 PLC配置以及盘柜布置和外部接线不作任何更改;增加了一套盘柜,盘柜内安装了一套Quantum PLC,PLC配置有140CPU 11303S,增加了开入模件、开出模件、模入模件、以太网通信模件。这就弥补配置点数不足的问题,同时解决了与上位机通信的问题。
图2 原配盘柜与扩展盘柜
4.1 数据采集和处理功能
原配置Modicon984 PLC和新增Quantum PLC都具数据采集功能,都配有相应的数据采集模件,两套PLC共同完成现地控制单元的数据采集功能;Modicon984 PLC采集到的所有数据通过MB+网络,采用Peer Cop方式送到Quantum PLC中去,Quantum PLC对所有的数据进行处理,即数据处理功能全部由Quantum PLC完成,这就充分利用了Quantum PLC高速的数据处理功能。
4.2 控制和调节功能
Modicon984 PLC和新增Quantum PLC都配有开关量输出模件,即都具有控制和调节功能;Modicon984 PLC中的开出点,既可以由Modicon984 CPU控制也可以由Quantum PLC控制,两者是‘或’的关系;Quantum PLC通过MB+网络,采用Peer Cop方式把开出点信息送到Modicon984 PLC中去,同时Modicon984 PLC也编有程序,可以实现对开出点的控制,这主要是用来实现对辅机或自启动流程的控制。
4.3 人机界面
在新增盘柜,装有触摸屏,触摸屏与Quantum PLC通迅,这样可以实现所有数据的实时动态显示,同时可以下发相关的控制令给Quantum PLC,Quantum PLC接受到控制命令后进行解释执行。
4.4 对外通信
在新增盘柜,安装有以太网通信模件和通信管理机,以太网通信模件用来和上位机系统通信。通信管理机主要是把现场辅助设备的运行信息进行采集,同时把采集到的数据信息送到Quantum CPU里,其自身具有八个RS-232串口,这样整个现地控制单元的外部通信功能大大增强。
4.5 系统结构主要特点
(1) 原有Modicon984 PLC相当于一个智能I/O,自身可以运行PLC程序,这样一些流程就保持不变,而这些控制功能又不受所扩展盘的影响;而对Quantum PLC来说,可以把Modicon984 PLC当一个扩展I/O来处理,它可以处理Modicon984 PLC所有的开关量、模拟量等;
(2) Modicon984 PLC和新增Quantum PLC采用Peer Cop方式,通过高速MB+网络进行通信,实践证明,通信快速、准确、可靠。
5 软件的功能和实现
5.1 Modicon984 PLC程序功能设计
(1) 编写简单的程序,以实现Quantum PLC和Modicon984 PLC可以同时控制Modicon984 PLC的开出点.
(2) 把开关量、模拟量进行处理,送到指定的寄存器,以便通过Peer Cop方式一齐传输到Quantum PLC;
(3) 简单的辅机流程和自启动流程
由于原配置Modicon984CPU不支持Concept编程,所以仍需用MODSOFT组态软件来编写。
5.2 Quantum PLC程序功能设计
(1) 发电机组的开停机流程、功率自动调节流程等;
(2) 对所有采集到数据进行处理分析;
(3) 接受上位机和触摸屏所发的控制命令并解释执行。
编程软件采用了组态软件Concept2.6,该软件支持梯形图(LD)、功能块图(FBD)、结构化文本(ST)等多PLC编程语言,能保证系统的各类控制功能的需求。
6 结束语
本现地控制单元改造方案,在结构、技术路线、实现方法上都有所创新,该系统的结构设计合理,技术路线和实现方法完全可行;改造实施简单,大大减少了安装、配线的工作量,改造工程实施完成几个月来,运行非常稳定,达到了预期的目标,该方案的成功应用为国内老电厂LCU的技术改造提供了典型范例,对tigao发电厂的自动化的水平有重要的现实意义。