西门子模块6ES7231-7PD22-0XA8品质好货
二、系统的软件设计
(一)软件流程
软件流程图如图3和图4所示。
图3 电梯控制主程序流程图
图4 楼层现实程序流程图
(二)模块化编程
本系统是集选式控制系统,控制比较复杂,适合采用模块化编程方法。首先要将各个输出信号的属性分类,模块与模块之间的衔接可以用中间寄存位来传递信息。如:门厅呼叫电路和轿箱内指层电路均要求读入按钮呼叫信号,并保持至呼叫被响应完成为止。将门厅呼叫按钮、箱内指层按钮、箱内开关门按钮、报警按钮等通过32级优先编码电路编码后输入PLC,在软件上就形成了读按钮编码电路模块。
系统软件大致分为八个模块:读按钮编码电路模块、楼层检测电路模块、控制七段数码管显示楼层电路模块、电梯选向电路模块和系统非正常工作状态及电机调速拖动电路模块、减速点信号产生电路模块、电梯轿箱开关门电路模块和按钮记忆灯显示电路模块。
楼层检测电路模块主要是读入楼层编码并将该记忆信号存入对应的中间寄存位,直到楼层改变为止。
控制七段数码管显示楼层电路模块主要控制两片七段数码管的显示。
电梯的选向模块主要是完成电梯在响应呼叫时作出的向上运行还是向下运行的判断。该模块有两个对系统来说特别重要的中间量输出,即上行中间寄存位和下行中间寄存位。
系统正常工作状态及电机调速拖动电路模块将系统初始化过程、强制工作过程及电机调速拖动过程合并为一个模块。
减速点信号产生电路模块完成将减速点信号通知系统的任务。电梯在运行到目标楼层检测点时要进入减速状态,而电梯在运行过程中会碰到很多的楼层检测点,只有到目标楼层的检测点时才会发出减速通知,电梯在经过目标楼层检测点时接到这个信号就开始减速了。
电梯轿箱开关门电路模块和按钮记忆灯显示电路模块是为了便于控制组成的模块,分别控制轿箱的并关门和按钮接过之后需要记忆显示的发光二极管电路。
(三)系统调试
电梯系统为模拟实用旅客电梯系统的教学实验装置。它能实现实际旅客电梯系统的绝大部分功能,包括:门厅召唤功能、轿箱内选层功能、顺向截梯功能、智能呼叫保持功能、电梯自动开关门功能、电梯手动开关门功能、清除无效指令功能、智能初始化功能、消除/检修功能、楼层显示功能和电梯平滑变速功能。
虽然本电梯控制系统已能满足基本的电梯运行要求,但仍有许多需要改进的地方:
1.增加与微机通信的接口,实现联网控制,多台电梯的综合控制由微机完成。
2.优化电梯的选向功能,使之能随客liuliang的变化而改变,达到高效运送乘客的目的。
3.增加出现紧急情况时的电梯处理办法。
4.需输入密码才能乘电梯到达特殊档层功能,且响应该楼层呼叫时不响应其他楼层呼叫。
5.设置电容感应装置,如关门时仍有乘客进出,则轿门未触及人体就能自动重新开门。
一、电梯控制系统组成
电梯控制系统可分为电力拖动系统和电气控制系统两个主要部分。电力拖动系统主要包括电梯垂直方向主拖动电路和轿箱开关电路。二者均采用易于控制的直流电动机作为拖动动力源。主拖动电路采用PWM调试方式,达到了无级调速的目的。而开关门电路上电机仅需一种速度进行运动。电气控制系统则由众多呼叫按钮、传感器、控制用继电器、指示灯、LED七段数码管和控制部分的核心器件(PLD)等组成。PLC集信号采集、信号输出及逻辑控制于一体,与电梯电力拖动系统一起实现了电梯控制的所有功能。
十层电梯控制系统由呼叫到响应形成一次工作循环,电梯工作过程又可细致分为自检、正常工作、强制工作等三种工作状态。电梯在三种工作状态之间来回切换,构成了完整的电梯工作过程。
(一)电梯的三个工作状态
1.电梯的自检状态
将程序下载到AB公司的MicroLogix1000型PLC后上电,PLC中的程序已开始运行,但因为电梯尚未读入任何数据,也就无法在收到请求信号后通过固化在PLC中的程序作出响应。为满足处于响应呼叫就绪状态这一条件,必须使电梯处于平层状态已知楼层且电梯门处于关闭状态。电梯自检过程的目标为:为先按下启动按钮,再按下恢复正常工作按钮,电梯首先电梯门处于关闭状态,然后电梯自动向上运行,经过两个平层点后停止。
2.电梯的正常工作状态
电梯完成一个呼叫响应的步骤如下:
(1)电梯在检测到门厅或轿箱的呼叫信号后将此楼层信号与轿箱所在楼层信号比较,通过选向模块进行运行选向。
(2)电梯通过拖动调速模块驱动直流电机拖动轿箱运动。轿箱运动速度要经过低速转变为中速再转变为高速,并以高速运行至减速点。
(3)当电梯检测到目标层楼层检测点产生的减速点信号时,电梯进入减速状态,由中速变为低速,并以低速运行至平层点停止。
(4)平层后,经过一定延时后开门,直至碰到开关到位行程开关;再经过一定延时后关门,直到碰到关门到位行程开关。电梯控制系统始终实时显示轿箱所在楼层。
3.电梯强制工作状态
当电梯的初始位置需要调整或电梯需要检修时,应设置一种状态使电梯处于该状态时不响应正常的呼叫,并能移动到导轨上、下行极限点间的任意位置。控制台上的消防/检修按钮按下后,使电梯立刻停止原来的运行,然后按下强迫上行(下行)按钮,电梯上行(下行);一旦放开该按钮,电梯立刻停止,当处理完毕时可用恢复正常工作按钮来使电梯跳出强制工作状态。
(二)电梯控制系统原理框图
电梯控制系统原理框图如图1所示,主要由轿箱内指令电路、门厅呼叫电路、主拖动电机电路、开关门电路、档层显示电路、按钮记忆灯电路、楼层检测与平层检测传感器及PLC电路等组成的。
图1 电梯控制系统原理框图
(三)电梯控制系统的硬件组成
电梯控制系统的硬件结构如图2所示。包括按钮编码输入电路、楼层传感器检测电路、发光二极管记忆灯电路、PWM控制直流电机无线调速电路、轿箱开关电路、楼层显示电路及一些其他辅助电路等。为减少PLC输入输出点数,采用编码的方式将31个呼叫及指层按钮编码五位二进制码输入PLC。
图2 电梯控制系统硬件结构框图
1.系统输入部分
系统输入部分分为两个部分,一是直接输入到PLC输入口的开关量信号部分,包括:控制台上的启动按钮、恢复正常工作按钮、消防/检修按钮、强迫上行(下行)按钮部分以及开关门行程到位开关。二是按钮编码输入信号部分。本系统为十层电梯系统,在轿箱内的选层按钮和门厅旁的向上、向下呼叫按钮共有28个之多,采用优先编码的方法将31个按钮信号编为五位二进制码。这里采用四片8位优先编码器4532和五个四二输入端或门4072组成32级优先编码器。
2.系统输出部分
系统的输出部分包括发光二极管记忆灯电路、PWM控制调速电路、轿箱开关门电路和七段数码管楼层显示电路等。
在PWM控制直流电机无线调速电路中,PWM产生电路接收来自PLC的八位二进制码,随着码值的改变,其输出的脉冲占空比也相应改变。轿箱开关门电路使用两个继电器、两个行程开关、直流电动机、功率反相器2003等构成控制电路。在七段数码管楼层显示电路中,七段数据管不经专用驱动芯片驱动而由PLC提供特定的二进制码直接输入。
三、系统软件设计
软件设计采用模块化和结构化的程序设计方法,即自顶向下、逐步求精的设计方法,并且适当划分模块以tigao设计与调试的效率。该系统不但要接受来自传感器、待测工件的信号,还要接受和处理来自于控制面板的按钮信号,以及由图像采集卡传来的数字信号,而且要求系统具有实时处理能力。因此,系统软件对实时性有一定的要求,同时还要对系统资源进行管理和调度。
1. 上位机软件设计
上位机监控软件主要由数据采集程序、检测与控制算法程序、中断服务程序、故障自诊断与处理程序等组成。系统模块划分如下:
(1) 初始化模块
硬件初始化
对系统中各硬件资源设定明确的初始化状态,包括对可编程器件初始化,各I/O口初始状态设定,为系统硬件资源分配任务等。
软件初始化
包括堆栈初始化、状态变量初始化、各软件标志初始化、各变量存储单元初始化、系统参数初始化等。
(2) 数据采集模块
控制摄像头摄取图像,通过图像采集卡完成A/D转换,并生成待处理的数据文件。
(3) 检测/控制模块
对得到的图像数据文件进行分析、计算、比较、检测,判别工件是否合格,并实现对键盘的管理。
(4) 中断管理模块
针对系统中的各种中断源和所选用的微处理机的中断结构,设计相应的中断处理程序模块,包括中断管理模块和中断服务模块。
(5) 显示管理模块
用于实时更新显示图像和数据,并对报警指示灯进行管理。
(6) 时钟管理模块
包括数据采样周期定时、控制周期定时、动态刷新周期定时、及故障监视电路的定时信号等。
(7) 故障自诊断与处理模块
它是tigao系统的可靠性和可维护性的重要手段,主要采取开机自检的形式,每当电源接通或复位后,系统自动执行一次自检程序,对硬件电路进行一次检测。上位机监控软件主要程序流程,如图6所示。
图6 上位机监控程序框图
2. PLC软件设计
PLC的程序采用了模块化设计方法,由主程序、手动控制程序、故障处理程序等模块构成。根据系统要求,PLC的I/O分配,如表1示。
(1) 输入输出信号
表1 PLC输入输出信号
(2) 梯形图编制
根据控制过程及输入输出信号编制出梯形图。PLC采用循环扫描方式,按梯形图从上而下,从左而右的先后顺序予以执行。同时,前后两个工件位置都进行互锁。部分梯形图,如图7示。
图7 定位工位梯形图
R001是内部继电器,表示选择“自动”,当PLC得到信号X010时,即传感器检测到定位工位有工件时,延时并输出允许摄像信号Y000,然后再延时2s(等待计算机作出判断)并且当翻转汽缸不在原位和翻转工位无工件时,输出工件可以离开定位工位信号。如果PLC接到计算机发出的“工件不合格”信号,即X014后,报警,直到按复位键停止报警。
四、计算机与PLC的通信
在计算机与PLC的集成控制系统中,一个关键的技术问题是计算机与PLC的通信问题。在本课题中,对于计算机与PLC之间的通信,我们考虑了两种实现方法:一种是利用串口通信,另外可通过I/O卡来实现。由于串口通信在实时性、可靠性、抗干扰性等方面都没有I/O卡好,又根据厂里具体情况,后还是选用了后一种方法。I/O卡即开关量输入输出卡,在此项目中,我们选择了PCL—724,24位数字I/O卡,传输速率为300KB/s。该I/O卡具有2个八位端口(A,B),端口地址范围为200H~3FFH,两端口都可以进行输入输出操作,在进行输入输出操作时,无需进行握手,因为数据可以直接写或读到设定的端口。由PLC输入输出信号表可以看到,PLC需要接收计算机3个信号,计算机需要接收PLC一个信号。它们的通信协议定义与地址设定,如表2示。
表2 计算机与PLC的通讯协议定义与地址表
五、结束语
本系统是PLC与工控机集成控制的很好应用,投入运行后,为企业带来了可观的经济效益和社会效益。该系统在工业现场控制方面,尤其在PLC控制方面,以其zhuoyue的控制功能和良好的性能价格比,赢得了用户的广泛赞誉