西门子模块6ES7231-7PC22-0XA0品质好货
西门子模块6ES7231-7PC22-0XA0品质好货
1 引言
城市生活垃圾、工业垃圾、医院卫生废弃物、淤泥和废橡胶轮胎等垃圾焚烧处理技术,利用垃圾焚烧的余热发电,变废为宝,将是今后环保技术的一个重要发展方向。这种垃圾焚烧日处理废物能力为1~350t,余热锅炉的热容量小,发电机组小,一般为20兆瓦以内。因此,垃圾焚烧发电厂的控制系统比大型电厂简单得多。一般来说,大型电厂的主机控制系统是无法采用PLC来控制的,只有一些辅机系统才能够使用PLC。但是,随着现场总线技术及微处理器性能的突飞猛进,PLC集散控制系统已经成功应用在中型及较复杂的控制领域中,例如,垃圾焚烧发电厂就可以使用PLC控制系统,这样可以大大降低控制系统的成本。
本文将介绍广东省南海市垃圾焚烧发电厂PLC控制系统,此控制系统由珠海市广东亚仿科技股份有限公司成功开发,并一次成功投入生产运行。
2 控制系统总体方案介绍
该集散控制系统采用Siemens S7-400系列PLC,Siemens公司的S7-400系列PLC是90年代推出的S7系列中的大型机型,具有完善的功能和强大的通讯能力,特别是总线之一的Profibus,得到很多厂家的支持,非常有利于分布式控制系统的使用,Profibus-DP总线的通讯速率可达12Mbps。S7-417H双机热备系统和ET200M分布式I/O组成的Profibus-DP总线网构成切换结构,实现故障时的无扰动自动切换,可用在安全性能要求极高的控制系统中。但是S7-417H双机热备系统造价相对昂贵,为了减少硬件投资,可以选用软件双冗余(用416CPU进行双机热备),采用分布式I/O的Profibus-DP现场控制总线,上位机与PLC之间采用OSM/ESM环形100兆工业以太网光网进行通讯, 上位机采用Intouch7.1组态软件进行系统组态。该厂的垃圾焚烧工艺引进美国Basic公司的专利技术,采用四级脉冲炉排,各项指标均达到国际环保要求, 一期日焚烧处理垃圾200t。该工艺技术在我国具有实际推广的应用价值。
(1) 工作原理
垃圾经自动给料单元送入焚烧炉的干燥床干燥,然后送入炉排,炉排在脉冲空气动力装置的推动下抛动垃圾,垃圾与炉排片上的均匀气孔喷出的助燃空气混合燃烧,燃烧产生的热量由余热锅炉回收。余热锅炉产生的高温高压水蒸汽推动汽机发电,燃尽后进入灰渣坑,由自动除渣装置排出。由主燃烧室挥发和裂解出来的烟气进入第二、三级燃烧室,进行进一步燃烧,使烟气的温度高达1000℃,烟气在此停留时间不少于2s, 使有毒的烟气迅速分解,后经烟气处理设备及除尘设备(电除尘、布袋除尘)处理合格后排入大气。
(2) 环保发电厂主要设备
① 焚化炉锅炉2台,每台主要的技术参数如下:
垃圾处理量: 8.33t/h
产生蒸汽量: 22.5t/h
过热蒸汽压力: 4.0MPa
过热蒸汽温度: 400℃
炉膛温度: 980℃
给水温度: 145℃
② 汽轮机发电机组一套,主要的技术参数如下:
主蒸汽压力: 3.9MPa
主蒸汽温度: 390℃
③ 发电机主要的技术参数如下:
功率: 12000kW
出线电压: 10.5kV
频率: 50Hz
额定转速: 3000r/min
功率因数: 0.8
励磁方式: 无刷励磁系统
④ 烟气处理系统两套
⑤ 配套电气供配电系统
该PLC集散控制系统I/O点数有3000余点,其中模拟量300余个。全厂的PLC集散控制系统图如附图所示。
附图 全厂PLC集散控制系统图
1. 概述
变频调速技术是一种新型的、成熟的交流电机无级调速驱动技术,它以其独特优良的控制性被广泛应用在速度控制领域。特别是在供水行业中,由于生产安全和供水质量的特殊需要,对恒压供水压力有着严格要求,变频调速技术也得到了更加深入的应用。
成都市自来水公司六厂日产水量60万吨,担负着成都市区及周边地区70%以上的供水任务。自1996年年底六厂的三期工程投产后开始向郫县供水,使得我厂的供水方式从单一的重力流供水变为重力流和压力流结合供水的方式。自向郫县供水以来,由于考虑到现阶段郫县的用水量较少,从节约能耗的角度出发,我厂使用一台泵同时向郫县供水和提供我厂的自用高压水。为了满足六厂自用水压力,保证厂内各个工艺环节设备(如消毒环节中的水射器)能正常工作,我厂自用水压力须较恒定的控制在0.3 Mpa以上,采用变频调速控制是保证压力恒定较为有效的方法。根据我们对郫县城区供水量的了解,发现郫县全天各时段用水量变化较大(见后图5),如果不对供水量进行调节,管网压力的波动也会很大,容易出现管网失压或爆管事故。采用变频恒压供水控制后,当郫县用水量较小时,这时相应管道和泵出口压力均较大,变频恒压控制方式将会降低泵的频率,减小泵出水量,从而降低管网压力;反之亦然。这样,小时用水量变化较大也不会造成管网压力有较大的波动。经过长期运行实践,证明了变频调速手段实现恒压供水不仅保证厂内自用高压水压力足够且稳定,而且保证了郫县供水的安全可靠性。
2. 控制系统构成
整个恒压供水系统有两组变频泵,每组均由一台变频器和一台水泵组成;系统以PLC为控制核心,由PLC采集压力信号和输出控制变频泵的运行。控制系统构成如图1所示。
图1 控制系统构成图
PLC处理器选用的是Allen-Bradley公司的PLC-5型处理器,变频泵选用的是ABB公司的SAMI STAR系列的315F 660/690型的变频器和水泵。系统由两只量程为0~1.0Mpa的压力变送器分别检测两台水泵后的输水管道的压力,压力变送器将检测到的压力信号转换为4~20mA的电流信号,送到PLC子站的模拟量输入模板(1771-IFE),通过PLC的PID运算,由模拟量输出模板(1771-OFE)输出4~20mA的电流控制变频泵的运行。
3. 控制原理及功能实现
3.1 PLC控制系统简介
我厂采用Allen-Bradley公司的PLC-5型处理器通过DH+通讯方式构建了全厂PLC工业控制网络,通过DH+网络上的RSView工作站实现人机对话。RSView工作站是指运行人机图形界面软件(RSView32)的计算机工作平台,该工作站建在中心控制室,是实现生产现场无人值守和运行集中管理的调度中心。利用RSView32可以有效地对控制过程进行监视和控制,可以实现图形化的人机对话界面,模拟生产运行的流程,在模拟流程上更加直观地实现生产流程的全自动运行监视、远程人工直接干预操作(如PID指令运行参数远程设定)、控制环节报警监视等功能。控制界面如图2。
图2 变频恒压供水系统控制图形界面(RSView工作站)
3.2 恒压供水的控制原理
SAMI STAR变频器具有REMOTE和LOCAL两种操作方式。LOCAL操作方式下,通过LOCAL START/STOP开关启停变频器,通过f REF LOCAL bbbbb0 输入端口的电位开关人工调节变频器工作频率;通过LOCAL/REMOTE输入点可以将变频器切换到REMOTE操作方式下,在REMOTE方式下,通过REMOTE START/STOP输入点进行PLC远程启停变频器,通过f REF REMOTE bbbbb0端口输入频率控制信号(百分比)控制变频器工作频率。根据供水量情况,我们把变频器的工作频率上限设定为水泵基频,即频率变化范围控制在0~50Hz,在此范围内水泵运行频率和定子相压成正比(及与变频器输入频率成正比),这使得变频器输入、水泵运行频率和泵的输出压力成较好的线形关系,可得到较好的控制效果。SAMI STAR变频器对用户开放的I/0接口位于TERMINAL BLOCK CARD上,主要使用的有:X11-1(REMOTE START/STOP);X11-4(LOCAL/REMOTE);X11-13/14(f REF REMOTE bbbbb0、4~20mA信号输入);X11-15/16(输出4~20mA变频器运行频率信号);X11-17/18(输出4~20mA变频泵运行电流信号)。变频器由PLC远程控制时,启动是由PLC向X11-4输出信号,使变频器切换到外部设备控制方式(REMOTE方式),再向X11-1输出信号,启动变频器。在恒压调节时,PLC处理器把检测到的压力信号作为反馈值,与PID运算的压力设定值(由调度人员根据情况在REView上设定)进行比较,再经过PID运算得到调节后的修正值,通过模拟量输出模板(1771-OFE)输出到X11-13/14,作为REMOTE方式下变频器的频率控制信号,由于该信号是相对变频器工作频率上限的百分比,所以变频器将输入信号进行内部运算后转为真实工作频率。
为了使三期变频恒压供水自动控制系统与全厂自动控制网络有机地结合起来,全面实现对恒压供水系统的运行情况和设备运行进行监视和远程控制,更加安全可靠地实现恒压供水,我们使用PLC进行PID运算和监控。PID闭环反馈控制原理如图3:
图3 闭环控制原理图
图4 PID流程图
PLC的PID运算调节通过该型处理器专用PID指令完成,通过设置各参数即可由PLC完成PID运算调节。PID程序段流程如图4。PID指令必须以相同的时间间隔周期性地执行,可采用计时器,定时中断或实时采样的等方法,此处选用了定时方法;PV是PID指令采样的压力控制反馈值,SP是PID指令的压力控制设定值,KP为PID的比例增益,KI为PID的积分增益,KD为PID的微分增益,这五个控制参数作为主要的PID参数参与控制,确定PID参数时要兼顾系统灵敏性和稳定性,由于我们恒压控制要求和设备的性能条件,参数设定更强调稳定性(及KI),由于微分环节有放大噪声的特点,我们将KD尽量设置得较小;SWM为PID指令转为手动直接调频的开关,SO设定为PID指令的在手动控制输出方式时的输出值,当变频器从PID自控调节转为手动直接调频时,SO替代PID运算结果作为转换时的输出值,将SO设定为控制值就可实现无缝转换,减小变频器运行频率的震荡。DB为PID指令的死区设定值,输出超出死区时PID指令通过自动运算限制输出超出限定范围。
3.3 相关控制功能实现
为了防止运行时由于压力变送器不可预见的故障造成PLC的PID运算调节失实,从而造成管网压力失恒引发失压或爆管的严重事故。我们分别在1#和2#变频泵后输水管上安装压力变送器,可以同时测到出厂输水管线上的压力;在PLC程序上对压力信号进行了相应的处理,在程序中设置选择软开关,调度人员可以在RSView上将其中一台压力变送器的值设定为“控制反馈值”,另一台压力变送器的值则设为“参考反馈值”(见图2:变频恒压供水系统控制图形界面(RSView工作站));对1#压力和2#压力值进行比较,相差0.1Mpa时,判断为,其中一只压力变送器出现故障,变频器控制转换为远程直接手动调频控制(通过RSView设置运行)。压力变送器正常工作时,“控制反馈值”经过平均滤波处理后,分别比较压力报警上限和下限值,如果超出控制范围,变频器控制转换为远程直接手动调频控制,否则“控制反馈值”作为PID调节的参数PV。
同时为了在就地手动控制实现在控制现场对变频泵进行开停控制和运行数据监视。我们在变频泵工作现场安装了A-B公司的PanelView图形工作终端,该工作终端提供图形交互界面和触摸输入方式,以从站的方式与PLC进行通信,进行数据和控制命令的交换,提供就地监控操作的通道。
4. 运行效果分析
4.1 有效保证郫县供水和我厂自用水压力稳定,tigao我厂供水安全可靠性
图5为数据库采集的2001年某日我厂恒压变频泵出水压力、频率变化以及郫县供水和自用水liuliang、管网压力数据关系图。
图5 变频恒压控制频率、压力、供水量关系图
从图中数据可看出郫县小时供水量变化很大,如果采用定速泵进行供水必然会导致高峰供水时段内管网供水压力不足,夜间用水量较小时管网压力过高,造成爆管现象。采用变频恒压控制后,变频器的频率随郫县用水量的变化而变化,及时调节我厂对郫县供水量,从而使郫县城区管网压力在一个较小的范围内变化(0.23-0.27Mpa)。另一方面,虽然我厂自用水秒liuliang变化不大,但由于我厂自用水和郫县供水为同一水泵加压后,分作两条支流,郫县用水量的变化必然也会导致自用水压力不稳定,采用恒压变频控制方式,基本克服了这种变化因素。从上图曲线也可看出,我厂自用水压力基本恒定不变。这样保证了我厂加氯水射器等重要设备的正常工作,保证了正常的消毒工艺流程,从而保证我厂出厂水水质,tigao我厂供水的安全可靠性。
4.2 高效节能
通过采用变频调速恒压控制,可在不同季节、全天不同时段内有效即时地调控水量,这样在用水量较低时,大大节约供水量,减少电耗。
在设定压力内跟随用水量供水,避免了传统供水方式的损耗,降低吨水消耗。
4.3 tigao自动化水平
根据我厂建立自动控制系统的原则“分散控制、集中管理、现场无人值守”,变频恒压供水技术的应用tigao了我厂自控系统的整体水平,真正作到了操作简便安全,现场无人职守,运行安全可靠。
2.5 正常停车(手动停车)
正常停车(手动停车)流程参见图6。
图6 停车流程图
2.6 纬停测控
(1) 纬停原因:断纬
(2) 纬停测控流程图:参见图7。
图7 纬停流程图
2.7 经停测控
(1) 经停原因:断经
(2) 经停测控流程图:参见图8。
图8 断经流程图
1、设计背景
从近几年的国际纺织机械展览会上可以看到:国外的织机制造商,如日本津田驹工业株式会社和丰田公司、意大利的SOMET公司、比利时的PICANOL公司、瑞土的SULZERTEXTIL公司和STAUBLI公司等,机电一体化技术经过几十年的发展,各自形成了具有很高自动化水平的电气控制系统,普遍采用新型高速可靠的微机群或计算机系统和人机界面,具有自诊断和数据采集管理功能,实现电子选纬、电子多臂等控制。而国内的无梭织机其技术水平与国外差距较大,国产剑杆织机的产量很大,但使用的技术普遍是从国外八十年代的机型改进而来,大多采用商用微机,并且档次不一。近两年,中纺机、经纬纺机、聊城纺机、龙力机械和杭州精工等厂家都把PLC应用于剑杆织机的电气控制。本文就使用台达EHPLC为核心而构成的剑杆织机主控电气系统作一介绍。
2、剑杆织机自动化系统分析
通常剑杆织机电控部分分为电子送经、收卷和主控三部分。可见主控部分主要实现织布的功能,其控制对象主要包括主电机、多臂电机、寻纬电机、离合器等。
2.1 点动
(1) 点动的作用
调整滚轮梳位置
断经后重新开车准备
(2) 点动流程:点动流程参见图1。
图1 点动流程图
2.2 盘车
(1) 盘车的作用:手动装布
(2) 盘车流程图:盘车流程参见图2。
图2 盘车流程图
2.3 正反寻纬
(1) 正反寻纬作用
手动调整综框位置
手动调整行程开关位置
(2) 正反寻纬流程:正反寻纬流程参见图3和图4。
图3 手动调整行程开关位置流程图 图4 手动调整综框位置流程图
2.4 开车
(1) 开车作用:织布
(2) 开车流程图:开车流程图参见图5。
图5 开车流程图