6ES7223-1PL22-0XA8品质好货
6ES7223-1PL22-0XA8品质好货
1、引言
切纸机械是印刷和包装行业的常用的设备,外形如图1所示。切纸机完成的基本动作是把待裁切的材料送到指定位置,然后进行裁切。其控制的核心是一个单轴定位控制。这次改造的切纸机是由单片机加编码器,变频器及刹车控制,当接收编码器的脉冲信号达到设定值后,单片机系统输出信号,令变频器停机,同时电磁刹车制动,从而实现定位。该系统陈旧,定位精度低,器件老化,故障频率高,给生产造成很大影响。通过我们用丰炜plc+海泰克触摸屏+东元伺服对该系统进行改造,不仅tigao了系统的精度,稳定性,还增加了一些新功能,使操作更加简单明了,取得了满意的效果。
2、切纸工艺
切纸机裁切工艺过程如图2所示,当推纸器将待切材料jingque地推送到指定位置后,由工作人员经按钮发出裁切指令,使压纸器将材料压紧,延时1-4秒后,锁刀电磁铁自动获电,打开保险栓,同时气垫停止供气,刀床开始下移进行裁切,裁切完毕,刀床自动返回高位置,保险栓锁住,裁切过程结束。
在工艺上,压纸器将材料压紧延时的时间简称刀压差,应视不同的裁切材料自由设定,如裁切瓦楞纸,刀压差应小于1秒,裁切牛皮纸可设定2-3秒。另外,为使纸张在平台上轻便移动,在工作台面上设置了数百个微小的喷气孔,由气泵电机带动气泵供气,使平台上形成一个气垫,以便厚重的纸张移动。但是在压纸器压纸时,气垫应暂停工作。在刀床安全保护方面主要采用了锁刀电磁铁,由它控制机械保险栓,使刀床停止裁切时处于锁定状态。在裁切工作台两侧还设置了红外光栏保护器,它不受日光和灯光的干扰,在裁切时,当手或者其他物品进入刀床前方的危险区时,遮挡了红外光线,则刀床急速停刀,实现了安全保护。
3、自动化系统设计
3.1 系统设计
人机界面由上海泰克hitech pws5600s触摸屏构成。plc选用丰炜vb1-32mt-d。伺服控制选用東元tsta20c控制器。原系统由单片机加编码器,变频器及刹车控制,当接收编码器的脉冲信号达到设定值后,单片机系统输出信号,令变频器停机,同时电磁刹车制动,从而实现定位。现我们采用丰炜vb1系列plc和东元的伺服配合再加触摸屏来取代原系统。
丰炜vb1系列plc是专为高速输入及定位控制应用而设计的plc。其具有两个硬体高速计数器不但计数频率高达ab相200khz,而且具备硬体比较中断功能,可完成精密之定位控制。在速位控制方面,vb1-plc提供了4点高速脉冲输出,可同时执行4个独立轴的定位控制。其中,y0及y1输出点可输出20khz脉冲,y2及y3输出点可输出高达200khz的脉冲。在多轴定位控制之应用场合可发挥高之经济效益。在该系统中我们主要是用到其高速的脉冲输出及便利的定位指令。基于plc技术的自动化切纸显示操作界面如图3所示。
3.2 系统特点
该系统使用丰炜plc+东元伺服+海泰克触摸屏改造后的优点:
(1) 该系统使用丰炜plc+东元伺服,采用高200khz脉冲加方向的控制方式,比之前编码器加变频的方式精度更高,控制更灵活,现在系统定位精度为mm,定位速度150mm/s。
(2) 该系统利用丰炜plc定位指令的现在值寄存器实现全程的位置定位及显示,使定位寻址及显示更加准确方便。
(3) 该系统手动状态时,利用vb1系列定位和相对定位指令,既可以直接指定切断长度,也可以直接设定相对的位移量,或者直接任意速度点动。
(4) 为确保精度,消除丝杠,皮带等的机械误差,该系统增加追差功能,即系统反向定位时多移动一个追差量,然后再正向移动相同追差量,以便消除间隙等机械误差。
(5) 因客户其他相同机型可能选用不同导程的丝杠,需要该程序可以进行不同导程丝杠的切换。利用东元伺服驱动器可以设置多组电子齿轮比,通过多功能输入接点进行切换,省去了通过程序计算转换的麻烦。
(6) 利用海泰克触摸屏的配方功能,可以将常用的工作位置流程存储,在今后的工作中可以直接调用设定好的工作流程,一步步进行裁切,更方便客户的使用。
目前,铝箔产品竞争日趋激烈,市场对铝箔的种类、质量、精度的要求也越来越高,特别是对于厚度仅为几十微米的铝箔产品。为了能在市场中立于不败之地,必须对铝箔的生产过程进行技术革新或改造。现阶段轧铝箔行业的自动厚度控制(Automatic Gauge Control,AGC)系统,大多数是依靠工业PC进行控制,由于工业PC的稳定性和实时性不如PLC,所以本文针对冷轧铝箔生产过程,采取增设液压控制系统和以PLC为核心的AGC系统,实现了控制系统模块化、网络化的同时,也大幅度地tigao了铝箔冷轧机系统的控制精度。
1 AGC系统的组合控制
AGC控制的目的是将轧机出口的铝箔厚度尽可能地控制在要求的目标值范围之内。因此,为获得良好的控制精度,AGC系统设置了多种控制器和补偿环节,这些控制器和补偿环节分别由不同的测量仪表和传感器组成。AGC控制的输出值,始终作为补偿值施加到冷压机系统的液压压下伺服机构内环控制器之中。现阶段的铝箔生产过程中,为了获得厚度更加jingque的铝箔,尽量减少坯料波动、轧制速度不稳定等因素对铝箔厚度带来的误差,AGC系统利用组合控制的方法使铝箔厚度误差处于可以控制的范围之内。
组合控制的具体过程如图1所示,通过PI调节器的增益参数来实现对辊缝、液压伺服缸的位置以及压力的控制,确保了铝箔厚度误差值处于允许范围之内。一次PI调节起到了反馈控制的作用,控制器在一定的调节范围内对铝箔厚度作初步的PI调节;假如铝箔厚度没有达到期望的精度要求,AGC系统将会自动对铝箔厚度进行二次PI调节,二次PI调节是基于一次PI调节的溢出部分(处于盲区位置)作为误差信号进行的。
2 AGC系统的硬件组成
如图2所示,采用西门子S7-400系列PLC作为AGC系统的核心控制单元。利用FM485功能模板tigao了AGC系统实时性的同时,也与分散的ET2 00通讯模块组成FROFIBUS-DP网络,进而减少了主站与测量点的接线。人机界面采用西门子公司生产TP27-6触摸屏,使用S7-400系列的443-1CPU完成主站与人机界面计算机的通信。位移信号的测量采用德国生产的MTS值传感器,左/右卷机的转速测量选用增量编码器,利用FM485功能模板上的值和增量编码器模块读取位移和转速值。相对于液压压下伺服机构的位置内环控制(APC)而言,AGC是铝箔厚度的外环控制,其输出信号主要是用来修正位置内环的辊缝设定值,通过液压伺服驱动,使轧辊快速动作,以达到迅速消除厚度误差的目的。
参与控制的信号有模拟量和开关量。模拟量信号可以使AGC系统的响应速度加快,进而tigao了对于铝箔的精度要求(μm级),模拟输入信号主要由传感器采集的位移、压力、速度值和测厚仪所测的厚度值组成,模拟输出信号由速度调节量和液压机伺服的调节量组成。设置开关量信号,主要是方便操作人员通过这些开关和按钮控制轧制铝箔的过程,开关输入量有测厚仪的状态信号和触摸屏的控制信号,输出则包括对测厚仪的控制以及与系统其他部分的通讯信号等。
饮料灌装机用于灌装各种各样的瓶装饮料,适合大中型饮料生产厂家。早期的灌装机械大多数采用容积泵式、蠕动泵式作为计量方式。这些方式存在一些缺点,例如:罐装精度和稳定性难以保证、更换灌装规格困难等。本系统采用的饮料分装计量是通过时间和单位时间liuliang来确定的,计量精度由可编程序控制器(PLC)控制确定,通过人机界面———触摸屏监测运行状态,可在线修改运行参数。PLC控制具有编程简单、工作可靠、使用方便等特点,在工业自动化控制领域应用广泛。触摸屏是显示器和触摸开关一体型的可编程终端(PT),是新一代先进的人机界面产品。专为PLC应用而设计的触摸屏集主机,入和输出设备于一体,适合在恶劣的工业环境中使用。
1工作原理
饮料灌装机主要包括三大部分:恒压储液罐、夹瓶及灌装头部分、变频调速传送带部分。主机的上部是恒压储液罐,里面有上限位和下限位液位传感器,它们被淹没时是1状态。液面低于下限位时恒压储液罐为空。饮料通过进液电磁阀流入恒压储液罐,液面到达上限位时进液电磁阀断电关闭,使液位保持稳定。灌装设备生产工艺流程见图1。
工艺流程图
恒压储液罐下面是夹瓶及灌装头部分,共有24个灌装头。夹瓶装置由气压缸1驱动下降,下降到位后,夹瓶装置由气压缸2夹紧定位,下降及夹紧由行程开关控制位置。定位夹紧后,灌装头由气压缸3驱动下降,到位后灌装头电磁阀打开,开始灌液,延时后电磁阀关闭,通过控制电磁阀的开启时间达到灌装容量控制。
传送带电动机由变频器控制,实现无级变速,达到系统经济运行的目的。电机启动1s后,进瓶气缸缩回、开始进瓶,3s后出瓶处气缸4伸出挡住空料瓶。进瓶处设置光电开关检测进瓶个数,当检测到24个时,出瓶处气缸5伸出不再进瓶,传送带电动机停止。这时,灌装头下降到瓶口,由通过触摸屏输入的时间使PLC控制灌装头的开启时间。灌装结束后,灌装头上升,夹瓶装置放松、上升。出瓶处气缸缩回,传送带电动机又开始转动,1s后进瓶处气缸5缩回,光电开关又开始检测进瓶个数。
2硬件系统设计
2.1系统框架
该系统既有开关量控制又有模拟量变频调速控制。设备既可以自动连续运行,各运动点又可人工点动操作,这样对应于各种操作的输入点、需要显示的动作状态信息输出点有很多。这些I/O信号如果采用电器按钮、指示灯显示的方式,会大大增加硬件模块及电气连线,相应故障率也会加大。我们采用PLC与触摸屏相结合的方案。触摸屏的画面是用专用的组态软件设计完成后,再通过计算机的RS-232C串行通讯口下载到触摸屏。PLC与触摸屏之间通过串行接口通讯,连线简洁。系统框架如图2所示。
硬件系统框图
2.2I/O控制的设计
灌装设备共设计有数字量输入点13个,其中:气缸运动传感器10个,液位传感器2个,光电开关1个。数字量输出点35个,其中:灌装头电磁阀控制24个,气缸运动电磁阀控制10个,储液罐电磁阀控制1个。
变频调速系统需要1个模拟量输入点和一个模拟量输出点。测速电机测量电机的转速,电压值信号接入模拟输入点,经过与给定值比较、PID运算,运算结果从模拟量输出点输出,作为变频器的控制信号,实现变频调速。
主控单元采用了SIEMENS公司的S7-200系列的PLC产品CPU224,外加两个数字量扩展模块EM223和一个模拟量扩展模块EM235。触摸屏采用台湾产PWS3260型。
3软件实现
3.1软件总体功能
图3是触摸屏软件控制程序框图。控制程序是用菜单形式编制的。自动功能包括:运行、暂停、结束、复位等。手动功能包括:所有运动部件的进、退、起、停等。利用ADP3组态软件中的交替性按钮功能编程。在按钮按下、抬起时分别对PLC相应的中间继电器置位,使PLC实现对某运动部件的进退控制。初值设定:按用户的需求,任意设定转速、计数值等参数,并对参数的上限进行监视,一旦越界,即给出提示。运行监视:监视系统的各个器件状态,如变频器、电机等的异常状态,及时断电保护,并给出报警提示。
程序框图
3.2PLC编程
采用西门子公司STEP7-Micro/WIN32软件,在上位机上使用较为直观的梯形图或语句表按控制流程和控制算法进行编程,程序编译成功后,通过连接上位机和PLC的PC/PPI电缆将程序下载至PLC中。
4结论
采用PLC-触摸屏结合的电气控制方案并与机械、气动、传感器技术组合为一体,使该灌装设备操作简单、性能可靠,设备的可维护性和灵活性得到显著tigao。
1 引言
电伴热系统为管道化溶出工程的主要部分。由于德国的熔盐电伴热温度控制装置是采用温度控制器、继电器等复杂电路设计,其中继电器故障率高,而我国现阶段没有较好的产品,因此采用,功能强大、性能稳定的日本三菱A2系列可编程控制器,减少了大量的中间环节,成功的解决了熔盐电伴热的控制难题,取得了满意的控制效果。
2 系统配置
电伴热系统包括:盐罐、盐管、盐阀等设备的伴热,99个电流信号、101个温度信号需要检测,33个加热回路需要进行控制。根据系统的特点,所设计的控制方案如图1所示。
2.1现场PLC站
该监控系统下位机采用日本三菱A系列PLC,设计2个站组成1个网,1个站进行温度信号的采集及传递,另1个站对回路电流进行采集,对33个回路进行控制。硬件的具体选择是:A62P为电源模板;A2NCPU为中央模板;AY13为开关量输出模板;A68RD3为PT100温度测试模板;AJ71C24为计算机通讯模板;A61AD为模拟量输入模板;AX41为开关量输入模板。
该系统投运以来,运行可靠,特别是在软件方面运行很好,实现了熔盐炉系统电伴热温度实时监测和控制,得到专家的好评,为管道化工序的整体运行提供了可靠的保证。
三线制PT100测温元件的二根线分别接至开关量输出模板AY13三组中相同次序的通道上,AY13三组共可接8个PT100信号,将AY13上三组的公共端分别接至PT100采集模板的通道的三个端子上(注意:将AY13上接PT100元件两个短路端的组的公共线接至A68RD3通道的B和C端子上),配合程序即可实现8路温度信号公用一个模拟量通道。程序框图如图3所示。
2.2上位机
采用2台386PC作为上位机,1台在现场操作室,1台在中央控制室,分别进行本地及远程监视管理,负责对温度、电流实时监测显示,重要信号保留历史曲线、信号报警及报表打印,2台上位机既是操作员站,又可作为工程师站。
3 软件设计
控制系统软件包分为上位机监控软件包和下位机控制软件包。
上位机监控软件是用SCRENWARE软件工具包开发而成,用于各种监控画面的显示和上、下位机之间的通讯,采用实时动态仿真模式进行显示,并在具体部位显示实时工艺参数,操作人员可根据此实时画面了解有关工艺设备运行情况;控制参数设定画面可完成控制参数的设定和修改;系统状况报警画面实现对各工艺设备故障情况进行声光报警,并输出故障类型、时间等,除此之外,本软件包还具有数据分析、建立历史数据库及定时、随机打印各种报表功能。
下位机软件包采用A2系列PLC自带的梯形图法和语句法编写而成,软件程序框图及清单略。
4 电伴热过程检测
按照熔盐炉系统工艺流程的要求:系统停车时,确保盐罐电伴热保温180℃以上;系统启动时,确保盐罐及盐管路和盐阀电伴热保温在180℃以上(依工艺要求而定),以保证盐泵启动后,熔盐能顺利通过和回流。一旦电伴热系统发生故障,熔盐凝固将致使整个熔盐炉系统无法运行,造成较长时间的停产事故。设计的特点说明如下:
(l)将整个盐管路按照、工艺划分为32个控制回路:盐罐13个回路、盐管14个回路、盐阀一个回路、旁通管4个回路。采用A2系列可编程控制器对101个温度测点采集显示,对32个回路直接进行控制;
(2)本系统考虑到启动时减少对供电系统的冲击,系统启动时,对每一个控制回路,采用分别程控(间隔5-10秒钟)由PLC程控启动,转入运行由PLC进行监测分时调节,减少系统供电负荷冲击;
(3)本系统的温度检测元件,共选用101支PT100铅电阻温度计,其信号采样方式在系统说明部分有详细介绍;
(4)电流和电压信号采集是通过电量变换器将互感器的信号转换成4-20mA(0-5V)信号送入PLC。
5 系统说明
由于本系统中大部分为模拟量信号,分电流和热电阻温度2种信号,电流信号监视各回路三相电是否正常,断、短路报警,但不参与控制;温度信号参与控制,测温元件均为PT100热电阻。针对本系统特点:模拟量多、实时性要求不是很高。在保证控制、监视的基础上,采用32点开关量输出模板进行切换,公共输出接至模拟量采集模板,配合软件编程可实现8路信号通过切换公用一个模拟量模板的通道。可节省大量模拟量模板,从而大大降低了系统成本。下面以温度信号为例说明信号切换采集的实现。接线图如图2所示。
三线制PT100测温元件的二根线分别接至开关量输出模板AY13三组中相同次序的通道上,AY13三组共可接8个PT100信号,将AY13上三组的公共端分别接至PT100采集模板的通道的三个端子上(注意:将AY13上接PT100元件两个短路端的组的公共线接至A68RD3通道的B和C端子上),配合程序即可实现8路温度信号公用一个模拟量通道。程序框图如图3所示。
通过定时接通AY13的相应通道,使得PTI-PT8信号依次与A68RD3的个通道接通,将每个信号接通时,所采集到的数据保存至相应的地址单元,即可实现多路信号切换采集。在编程时需注意:AY13通道切换后应在延时1个A68RD3处理周期后再读取A68RD3通道中的数据,否则采集的数据将会出现跳变,这是由于A68RD3采样方式分:Sampling、Time averaging 、count averaging3种,A68RD3的采样时间随启用的通道数而不同计算公式为:启用的通道数×40ms; Sam-Pling方式为每个采样周期采一次样,采样值存入相应的缓冲区;Time averaging方式为在指定的时间内每个采样周期内的采样值除去大、小值后的平均值存入相应的缓冲区;count averaging方式为将经过指定次数的采样周期后所采集的采样值平均后放入存入相应的缓冲区。现场实际应用时,为保持数据准确,一般采用后2种方式。
由于A68RD3通道一经启用,信号处理就会一直进行,A68RD3的一个处理周期为:Time averaging方式为指定的时间;count averaging方式为:指定次数×启用通道数×40ms。因为该系统采用切换方式,每一信号只在相应时间段内接入A68RD3,如果切换后,延时小于一个A68RD3处理周期,则上一信号的部分采样值将被计入当前处理周期和当前信号的部分采样值一起进行平均输出,造成数据误差,如上一信号和当前信号差别比较大,就会造成数据跳变。特别是如果采用上升沿取值,就会造成数据错误。
电流信号的采集原理与温度信号的采集原理相同,此处不再多述。