全国服务热线 15221406036

6ES7231-0HF22-0XA0原装库存

更新时间:2024-05-08 07:10:00
价格:请来电询价
联系电话:
联系手机: 15221406036
联系人:聂航
让卖家联系我
详细介绍

6ES7231-0HF22-0XA0原装库存

1引言

铁路安全继电器是铁路信号控制系统中的重要执行元件之一,必须在出厂时和使用过程中定期对其电气特性参数进行测试。然而,传统测试设备存在测试精度低,可靠性差,效率低下以及对测试人员要求高等缺点,不能满足现代继电器测试的要求。PLC作为一种新型的控制装置与传统继电器控制系统相比,具有时间响应快,控制精度高、可靠性好、控制程序可随工艺改变、易与计算机相连、维修方便、体积小、重量轻、功耗低及高性能等优点。触摸屏也是一种新型的人机交互设备,操作者只需用手触摸计算机显示屏上的图标或文字就能对主机进行操作,这样就摆脱了传统交互设备复杂操作,即使新手也能轻松操作整个设备。因此,既减少了对操作人员的要求,也tigao了工作效率。本文采用PLC、触摸屏及相关辅助电路设计了一种综合电器测试台。

2硬件电路设计

2.1系统概述

该继电器测试台采用欧姆龙CPM2A型号PLC作为控制单元、ET500系列触摸屏实现人机交互,测试普通继电器、接触器、过流继电器、接地继电器的吸合电压(电流)、释放电压(电流)及电磁(电子)式时间继电器的延时时间等参数。图1给出其硬件结构框图。

PLC通过I/O捕获继电器触点动作,通过扩展模拟I/O模块记录待测继电器动作时的电压(电流)值。同时,PLC把检测到的继电器状态和动作信号送人触摸屏显示,并对各种故障报警等。

2.2测试原理

测试前根据待测继电器型号及类型通过触摸屏设定参数,测试开始后可选择自动、人工方式通过PLC控制增(减)电压(电流),待达到待测继电器吸合电压(电流)、释放电压(电流)后,动合接点(衔铁)动作,PLC记录此时的电压(电流)值或和接点传唤时间存入内部数据区,待测试完毕后通过触摸屏显示并打印。

由于测试对象包括直流或交流继电器,电子式或电磁式继电器。电子式又包括共阴或共阳型。因此,该测试台在设计中满足了各种型号、类型继电器的测试需求,其原理如图2所示。系统通过扩展单元的4~20 mA模拟量控制信号选择直流或交流电源。

在测试时间继电器时,被测的是额定电压下继电器的动作延时时间或释放延时时间。考虑到继电器线圈电压从0 V加至额定值需要一定时间,这会带来测量误差。所以该测试台采用在电源输出端加上一个固体继电器(SSR),图2所示的是使系统自动识别延时类型。开始测试时,系统自动调整输出电压为设定的线圈额定电压,然后通过SSR切断输出电压,等待6 s使线圈两端电压降为0 V,然后再触发SSR使之导通,此时设定额定电压直接输出到时间继电器线圈,并开始计时。

当操作人员在测试前选择电磁或电子式时,测试台根据触摸屏传来的参数自动切换辅助继电器J10的触点位置,以完成类型的自动识别。图2中J10触点向上构成电子式测量电路连接,J11为电子式继电器的负载继电器;J10触点向下构成电磁式测量电路连接。在选择电子式的同时还要选择被测继电器为共阴还是共阳极,测试台中采用辅助继电器J12的自动切换来完成共阴和共阳极的切换,触点向右构成共阴极,向左构成共阳极。

3软件部分设计

继电器测试台的软件设计主要包括PLC控制软件和触摸屏组态软件两部分。由于欧姆龙CPM2A中增加了一个内置的RS232连接器,PLC无需配置专用的通讯模块就能方便地与外部设备进行通信,所以通过触摸屏与PLC之间的RS232传输就能实现实时通信功能,点击触摸屏向PLC发出各种控制信号,PLC接到触摸屏发出的指令信号后执行运算与控制任务。

3.1 PLC控制软件

PLC作为控制单元,是整个系统的控制核心。通过接收开关量和模拟量的输入,经处理后输出开关量和模拟量去控制继电器的动作。PLC控制软件主要由初始化模块、状态检测模块、控制模块、通信模块和故障处理模块组成,如图3所示。

初始化模块用于测试电流、电压、时间和日期的初始化,以及所测继电器类型的选择。状态检测模块用于各组成部分的状态检测和显示,并通知故障处理模块进行故障处理。通信模块用于接收触摸屏传来的参数信息,实现与PLC的通信。控制模块用于电流、电压调节和人工调节。

3.1.1状态检测

状态模块主要是检测继电器的状态转换。由于触点的物理特性。动触点在吸合接触静触点的瞬间往往会先吸合,再以微小的幅值弹开后再次吸合。针对这样的"抖动",传统测试装置因灵敏度太差,而对测试结果不会造成影响;然而,该测试台因采用PLC检测触点接触,虽然仅仅是不到s,但是PLC会因捕捉到这样的"抖动"而误认为触点吸合了两次或更多次,以致测量无法正常进行。因此,在软件设计中采取了防抖功能,如图4所示。接点不动作时定时器002计时开始,20 ms后输出为"1"。当接点闭合或断开瞬间,辅助继电器20.09或20.10接通一个扫描周期,高速计数器002开始计时,计时到后辅助继电器20.12接通一个扫描周期,表示继电器状态已可靠转换。

3软件部分设计

3.1 PLC控制软件

3.1.1状态检测

3.1.2输出控制

在测试中,当需要对线圈两端升(降)电压(电流)时,为防止电压(电流)上升过快而造成测量误差较大的问题,通过PLC发出0.2 s的定时脉冲。在PLC发出每个脉冲的同时对电压进行增减,步长为0.1 V。但是有时需要快速增加输出,操作人员可以选择手动输出方式,长按时间2 s以上触摸屏上输出增按钮。这种情况下,采用单位输出增量△a为变值来实现。图5所示快速输出增量图。可见,第n-1次输出增量为an-1,第n次输出增量为△an,控制输出增量△a使△an=an-1+1,使每相同时间△t内的输出增量递增,就可实现输出值a的快速增加。人工输出快速减少时其原理一样。


 3.1.3故障处理

测试过程中有异常情况时,系统会根据检测的结果进行相应操作。例如,在测量继电器的吸合电压时,假如继电器线圈断线。根据常识在这种情况下无论系统怎么增加电压,触点都不会吸合,继电器都不会动作。因此,当系统加压到一定值后继电器如果还未动作,系统即认为继电器损坏,结束测量,弹出错误报告。还有其他异常情况,诸如打印时未接打印机、调压模块故障等。

3.2触摸屏组态

触摸屏界面由支持软件设计、编译,然后从支持工具下载到触摸屏即可使用。触摸屏与PLC之间通过RS232通信电缆进行连接。由PLC对触摸屏状态控制区和通知区进行读写,以达到两者之间的信息交互。 触摸屏的组态是在EasyBuilder组态软件下完成。根据综合电器测试台的要求,设计了初始界面、测试主控界面、电压测试界面、电流测试界面、接地继电器测试界面、电磁式时间继电器测试界面、电子式时间继电器测试界面和手动输出界面共8个人机交互界面。

图6所示为测试主控界面。其过程为是先完成测试界面各个窗口、按钮的布局;其次为了使触摸屏和PLC能够正常通信,还要对测试界面的各个子窗口、按钮和输入区域进行相应的设置。设置完成后对其编译,编译通过后就可通过RS232通信电缆将组态信息下载至触摸屏中,这样触摸屏和PLC的通信就建立起来了。然后,运行组态软件,操作人员用手触控这些输入区域时,系统将弹出数字字母键盘,如图7信息输入键盘所示。在该界面可以输入设备名称、规格型号、产品编号、操作员代号、上车号、下车号等信息。根据需要测试的项目触控界面中相应的按钮进入相应的测试操作界面。


4结语

该设计的继电器电器测试台已经投入使用,运行结果证明,基于PLC和触摸屏控制的综合电器测试台的工作效率较传统测试设备有大幅度tigao,系统工作稳定。具有下述优点:(1)触摸屏人机界面上设置的各种按钮、开关、信号显示灯、仪表等都是实物的替代品,触控寿命长,大大tigao了电器测试的可靠性。(2)触摸屏与PLC的连接通讯是通过软件实现的,不占用PLC的I/O点,只需要小型的PLC即可满足测试台的生产,节省了成本。(3)检测精度远远高于传统测试方式,且安全性高。(4)系统的程序接口简单,用户能够很方便地进行系统的二次开发,配置灵活,适应客户要求,保证了整体系统的灵活性和可伸缩性

1 引言
莱钢轧钢厂中小型车间加热炉为步进炉,用来对连铸坯进行加热。使用燃料为高炉和焦炉混合煤气,钢坯需要经五段加热区加热到适当温度后出炉。加热炉燃烧介质各参数的稳定运行非常重要,它直接影响到烧坯的质量,并涉及着安全生产等重大问题。在生产过程中对加热炉炉压和温度的稳定有严格的要求,比如燃气的liuliang和温度等等。要想实现这些参数的稳定,并且达到较好地配比有不同的方法可以实现。炉区仪控的热工检测控制量共573点,其中模拟量输入98点,模拟量输出24点,开关量输入261点,开关量输出190点。调节回路16套,分别对加热炉的煤气、空气的liuliang、压力,炉内温度,换热器的保护等进行控制。

随着微电子技术的发展,PLC产品在其功能和性能指标上都大大地丰富和完善,因此,我们就应用PLC的一些特殊功能模块和一些普通的I/O模块对加热炉的各个参数进行自动控制,包括前面提到的各种参数、以及通过PLC和变频器的通讯实现对变频器输出频率的控制。

2 系统构成
本系统上选用一台上位机MASTER VIEW,一台监控站Operate Station520配以ABB ADVANT BUILD软件包,PLC部分选用ABB MASTER PIECE200/1,它具有成本低、运行可靠、功能较强的特点。本系统大致可以分为三个部分;
(1) 仪控系统以及PID调节部分;
(2) 双交叉限幅燃烧系统;
(3) PLC和变频器的通讯部分。
系统构成框图如图1所示。


图1 系统配置图



3 仪控系统组成及控制功能
现仪控系统16套自动调节回路中,均采用PID调节,操作方式分为自动、手动方式,执行机构有14套电动方式、2套液动方式。操作站实行对炉子的状态监控、意外事件报警等功能。

3.1 仪控系统的检测
入炉煤气、空气的liuliang检测由管路孔板检测差压,经差压变送器转换成标准信号(4~20mA)进PLC。入炉煤气、空气的压力从管路出压口取煤气压力与大气压力比较所得差压信号,经差压变送器转换成标准信号进PLC。炉子的炉温(S型)、换热器处温度(K型)由热电偶检测进PLC。所有信号经PLC分别计算转换后,参与控制,并可在操作站显示。
3.2 加热炉压力控制
为保证助燃空气与煤气压力保持稳定、使炉内燃烧顺利进行,煤气和空气的压力必须进行控制。加热炉炉内压力过高,过低都不恰当,过高会使炉门喷火并损伤炉子设备,过低会使加热炉吸入冷空气,影响加热炉燃烧质量及效果,炉内压力的控制也很重要。
(1) 助燃空气压力控制
助燃空气压力的大小,是保证喷嘴正常工作的重要条件。助燃空气压力调节是PID调节。如果设定值与反馈值存在偏差,PID调节开始进行,尽可能在短时间内使偏差小。当反馈值大于设定值,经PID运算后向阀门输出控制信号,使阀门关小,于是压力下降,当反馈值小于设定值,经PID运算向阀门输出信号,使阀门开大,压力升高。
(2) 煤气压力控制
煤气压力控制阀主要起安全保护作用,煤气和空气若是出现低压,将会出现事故。所以在煤气和空气主管道上,分别装有两个低压开关,在换热器前后也各装有一个。任意一个低压开关动作,将会使煤气主关断阀都会自动关闭,停炉,保护加热炉。
(3) 加热炉炉内压力控制
炉内压力一般要求保持微正压控制。炉压滞后大,时间常数小,因此采用前馈—负反馈调节。系统调节方块图如图2所示。



图2 系统调节方块图


3.3 换热器保护
常温的煤气、空气通过换热器后以300-4000C进入炉内燃烧。换热器的温度不能过高,也不能过低。过高损坏设备,过低会使煤气结露,生成弱酸腐蚀换热器。

3.4 PlD调节
PID调节部分共16路,包括预热段、加热上段、加热下段、均热上段、均热下段煤气、空气的温度、liuliang等参数的控制。PID控制主要通过PID控制单元,该单元主要有以下特性:
(1) l00ms高速采样周期,实现了高速PID控制;
(2) 输入信号的抗干扰
滤波器衰减输入噪音,控制输入意外干扰,使PID控制成为有效的快速响应系统;
(3) 多种输出规格可供选择;
(4) 八组数据设置;
八个数值(如设定点(SP)和报警设置值)可以预置在八个数据组中;
(5) 可以用数据设定器输入和显示当前值;
(6) 可以用PLC程序输入和检索数据。
同时我们通过PLC的程序实现加热炉的双交叉限幅燃烧系统控制,从而实现了加热炉的稳定运行。
PID控制可以分为本地控制和远程控制两种模式,远程控制即通过PLC实现的控制,又有自动和手动两种方式,自动控制即由PLC进行全自动控制,不需要进行人工干预。手动控制即在上位机上给定一个阀位输出值,通过PLC对阀位进行控制。在正常情况下都是在远程控制模式下的自动状态进行,并且每个PID控制回路的SV值、PV值、OUT值都可以在上位机上用棒图显示出来,非常直观。
同时在上位机上可以很方便地修改各燃烧介质温度、压力以及每个控制回路的PID参数,如设定值(SV)、“P”值、“I”值、“D”值,并且操作界面非常友好,操作方便。

4 双交叉限幅燃烧系统
加热炉所用空气、煤气liuliang波动频繁,同时煤气的热值等因素也会影响燃烧效果。对这些不利因素,所用燃烧控制系统由温度控制和liuliang控制组成,在控制系统中设计了高、低选择器、系统运算单元和一些平衡换算单元,并辅有liuliang的温压补偿,加热区上下段的主副控制。
4.1 温压补偿
在气体liuliang控制中,由于气体所处的温度、压力不同,需进行温压补偿。在本加热炉燃烧控制中,空气liuliang温压补偿设为K1计算公式如下:


按式(1)计算出的数值K1放在AOC149中,各空气liuliang变送器测的实际数值乘以此稳压补偿,在参与计算与控制。
煤气liuliang温压补偿设为K2,

按式(2)计算出的数值K2放在AOC150中,各煤气liuliang变送器测的实际数值乘以此稳压补偿,在参与计算与控制。

4.2 双交叉限幅燃烧控制与实现
炉内分预热段、上加热段、下加热段、上均热段、下均热段。煤气、空气liuliang调节系统共有十路,由于控制原理基本相同,现仅以均热上段的燃烧控制为例进行说明。
(1) 燃烧控制系统原理
在煤气liuliang调节回路中,炉温PID的输出A1与根据实测空气liuliang折算成需的煤气liuliang之后,分别乘以一个偏置系数K3,得到信号A2,乘以一个偏置系数K4得到信号A3,A1、A2、A3三者经过高低选择器比较,选中者作为煤气liuliangPID的设定值。空气liuliang调节回路中,炉温PID的输出B1,与根据实测煤气liuliang折算成所须空气liuliang之后,分别乘上一个偏置系数K1得到信号B2,乘上偏置系数K2得到信号B3,B1、B2、B3三者经高低选择器比较,选中者乘上liuliang补偿系数,送到空气PID作为设定值。
其系统组成原理图如图3所示。



图3 双交叉限幅燃烧控制原理


(2) 系统调节过程及特点
在系统稳定状态时,温度PID的输出以A1送到煤气 liuliang调节回路PID作为设定值,以B1送到空气liuliang调节回路PID作为设定值。
在负荷剧增(温测<温给)时,温度PID的输出剧增.对于空气liuliang调节回路,随着B1开始增加时,B1

5 结束语
该系统应用加热炉后运行稳定,也降低操作者的劳动强度,受到生产厂家的好评;该系统的操作也非常方便,凡是需要修改的参数都可以在上位机或者监控站上直接输入,如变频器的起/停、基准频率、每个PID控制回路的参数值等;另外,该系统价格低,投资少,降低了产品成本,效益显著。


联系方式

  • 地址:上海松江 上海市松江区石湖荡镇塔汇路755弄29号1幢一层A区213室
  • 邮编:201600
  • 联系电话:未提供
  • 经理:聂航
  • 手机:15221406036
  • 微信:15221406036
  • QQ:3064686604
  • Email:3064686604@qq.com