镇江西门子S7-300代理商
镇江西门子S7-300代理商
本文针对食用菌培养基的发酵工艺,简要介绍风机变频控制系统的组成及其控制过程。分析了该控制系统的缺陷,自动化水平低、可靠性差。结合当今先进的自动化控制技术,择优选择佳控制方法。提出了采用西门子公司S7-200 系列PLC 的自由口模式与易能公司EDS1000 变频器串行通讯的方法。应用多机通讯原理,PLC 为主机,变频器为从机,主从机点对点通讯。易能电气的EDS1000 系列变频调速器支持的串行通讯标准RS-485 协议,S7-200 PLC 自由通讯口方式的特色功能,使S7-200 PLC 和易能EDS1000 系列变频器通讯协议达成一致。本文以设置变频器的运行频率和读取变频器的参数为例,给出相应的PLC程序。
关键词:变频器;PLC;自由口通讯
0. 引言
我国东北地区是规模大的食用菌生产加工出口基地之一。随着市场需求的不断增加,生产能力的逐渐扩大,生产设备的老化与滞后问题突显出来。培养基二次发酵是某企业一个重要的生产过程,是食用菌生产的基础工序。目前,该公司有6 个培养基二次发酵隧道。每个隧道配置8 个温度传感器,分别布置在发酵隧道的入风口、出风口和培养基中,用于检测发酵过程温度。每个隧道配置一台风机和风门,用于调节发酵隧道的温度,达到整个发酵过程的要求。现阶段,该公司采用人工的方法监控隧道温度,并用手动的方法调节风机转速和风门开度。自动化水平低、耗能高、人力资源的浪费等诸多问题急需解决。
在传统的PLC 变频控制集成系统中,变频器的启动/停止与故障监控由PLC 通过开关量实现端对端控制。变频器频率是由PLC 通过模拟量输出端口输出0~5(10)V 或4~20mA 信号控制,需要PLC 配置昂贵的模拟量输出端口模块。变频器出现故障时由PLC 读取变频器的故障报警触点,对具体故障原因并不清楚,需查询变频器报警信息后再阅读变频器说明书才知道。随着交流变频控制系统及通讯技术的发展,可以利用PLC 及变频器的串行通讯的方式来实现PLC 对变频器的控制。
在工业自动化控制系统中,为常见的是PLC 和变频器的组合应用,并且产生了多种多样的PLC 控制变频器的方法,其中采用RS-485 通讯方式实施控制的方案得到广泛的应用:因为它抗干扰能力强、传输速率高、传输距离远且造价低廉。本文就是针对该公司的自动化问题,应用PLC 与变频器的串行通讯,实现风机的变频调速和远程监控[1]。
1. 变频器通讯的系统配置
1.1 变频器的选择
易能电气的EDS1000 系列变频调速器提供串行通讯技术的支持。它所支持的串行通讯技术包括标准RS-485、PROFIDRIVE、 LONWORKS 在内的多种现场总线方式。其中,RS-485通讯方式为用户提供了无需附加任何费用的、为廉价实用的串行通讯方式。只需按照EDS1000 变频器规定的通讯数据结构、控制字和状态字格式发送数据即可实现与变频的通讯。
1.2 PLC 的选择
西门子工控产品在工控领域应用市场中有较高的占有率。S7-200 系列是西门子SIMATIC PLC 家族中的小规模PLC 成员,自由通讯口方式是S7-200 PLC 的一个特色的功能,它使S7-200 PLC 可以由用户自己定义通讯协议。利于自由通讯口方式,在本系统中PLC可以与变频器方便连接。PLC 通过自由通讯口方式与变频器通讯,控制变频器的运行,读取变频器自身的电压、电流、功率、频率和过压、过流、过负荷等全部报警信息等参数,这比通过外部端口控制变频器的运行具有较高的可靠性,节省了PLC 宝贵的I/0 端口,又获的了大量变频器的信息。在本例中,作者将按照自由口协议来对S7-200 的自由口进行编程[2]。
1.3 系统硬件组成
EDS-1000 系列变频器R-485 接口与西门子S7-200 系列226CPU 型PLC 的自由通讯口1的配线图,如图1 所示。PLC 为主机,变频器为从机,主从机点对点通讯。
1.4 硬件安装方法
(1)用网线专用压接钳将电缆的一头和RJ45 水晶头进行压接;另一头则按西门子PLC自由通讯口的针口排列,与DB-9 专用转接插头相连。
(2)将RJ45 电缆分别连接变频器的PU 口,把DB-9 专用转接插头与S7-200 PLC 的自由通讯口1 相连
2. 变频器通讯原理
EDS1000 系列变频器的串行通讯为异步半双工的方式,使用字节奇偶校验。PLC 为主机,变频器为从机,系统电码的传输由主机控制,主机不断发出某个地址的电码给从机,等待从机的响应。主机多能带31 个从机,在有中继器的情况下,可以增加到126 个从机,也就是从机的地址多可以设定到126。通讯时,传输的默认格式和传输速率为:8-N-1,9600bps。传输的数据命令帧格式表1 所示。
上述数据结构中:
(1)帧头:为字符“~”(即十六进制7E),单字节。
(2)从机地址:从机的本机地址,占用两个字节,ASCII 格式。变频器出厂设置为01。
(3)主机命令/从机响应:主机发出的命令,从机对命令的应答。占用双字节,采用
ASCII 格式。
(4)辅助索引/命令索引/故障索引:对于主机,辅助索引、命令索引用于配合主机命令实现具体功能。对于从机,辅助索引、命令索引用于从机上报故障状态码,命令索引不作改动,直接上报。数据类型为16 进制,4 个字节,ASCII 格式。命令索引占用低二个字节,辅助索引占用高二个字节,数据范围为“00”~“FF”。
(5)校验和:数据含义为帧校验,占用四个字节,ASCII 格式。计算方法为“从机地址”到“运行数据”全部字节的ASCII 码值的累加和。
(6)帧尾:十六进制0D,单字节[3]
3. PLC 编程示例
本文结合发酵隧道控制系统的需要,考虑其实用性,本系统主要是设置变频器的运行频率和读取变频器的参数。
3.1 变频器的运行频率设定程序
PLC 在次扫描时执行初始化子程序,对通讯端口进行设置。本例运用端口1 进行通讯,变频器地址为01。例如:设定值为40.00HZ,格式:“~010C00010FA0027C\R”,程序如下:
Network 1 //初次扫描,进行初始化操作,置传送字节数。//
LD SM0.1
MOVB 18, VB199
Network 2 //若SM0.7=1,允许自由口模式//
LD SM0.7
MOVB 9, SMB130
Network 3 //若SM0.7=0,允许PPI/从站模式//
LDN SM0.7
R SM130.0, 1
Network 4 //初始化从机运行频率给定命令//
MOVB 0, MB2
MOVB 18, MB3
Network 2 //连接字符接收中断到中断程序0//
LD SM0.7
ATCH INT_0:INT1, 25
ENI
Network 3 //若MB2=MB3 时,则:计数器清0,恢复初始状态//
LDB= MB2, MB3
MOVB 0, MB2
MOVD &VB320, VD316
中断进行接收数据程序如下:
Network 1 //断开中断,将数据放入数据区//
LD SM0.0
DTCH 25
MOVB SMB2, *VD316
INCD VD316
INCB MB2
4. 结束语
使用此方法采用西门子S7200 系列226 型CPU 的PLC 通过自由口1,使用RS-485 协议对易能EDS1000 型变频器进行控制,极大地减少了线路连接的复杂性,避免了现场可能的各种电磁干扰对控制设备的影响
将运动型PLC成功的应用于加速器高频D电路自动调谐系统中,实现系统自动调谐。达到了在强电磁干扰环境下系统稳定运行的要求。根据鉴相器的输出的大小,用相应的编程软件对PLC两路输出脉冲进行编程,控制输出脉冲的频率,结合使用三相混合式步进驱动器、步进电机及机械传动系统,从而控制步进电机实现D电路的jingque调谐。使用PLC降低系统调试和布线难度,缩短了开发周期,并为系统调试和维护提供了灵活性。
关键词:D电路 自动调谐 运动型PLC 加速器
一、 概述:
D电路频率自动微调是专门为加速器高频D电路设计的,完成自动调谐的装置。
D电路由一个高频腔体构成,这个腔体是加速器的重要组成部分之一,加速器运行时,高频电压加在这个D电路上,用来实现对粒子的加速。D电路的示意图如图1所示,D电路的调谐是靠改变短路片的位置(粗调),细调是靠改变微调电容对D型盒的距离来实现。在正常运行中,只要高频机的频率固定,短路片的位置就固定了,但是由于各种因素的影响(包括热变型、机械震动等),D电路的参数是不稳定的。因此D电路就不能保持在谐振状态,且D电路的Q值很高(5.5Mhz时,可达8800),因此D电压将不稳定。所以要靠频率微调系统来实现D电路的自动调谐,以实现频率稳定。从而改善束流品质,满足实验对束流的要求。
具体参数要求为:频率稳定度为1×10-6。(有自动和手动两种模式)。
随着科学技术的不断进步,原有的分离元件的频调系统,器件老化,技术落后,已满足不了物理实验的要求。我们在原有系统积累大量经验的基础上,设计了新的自动微调系统。该系统由四部分组成,即360度电子移相器、鉴相器、运动型PLC,步进电机驱动器、步进电机及机械部分组成。
图1
二、系统组成:
1. 360°电子矢量合成移相器见图1
图2、矢量合成移相器原理方框图
当UA不变时UC也不变,因此移相时不伴随幅度变化的条件是
乘法因子K1、K2由控制电压确定,这样w和U保持近似线性关系,通过调整K1、K2实现移相。
2. 相位检波器
相位检波器的功能是实现相位差转换成电压,即Dw——-V的转换。从图2可以看出,电路输入的两个原始信号U1、U2分来自高频发射机和D电路,前者采用电容耦合,后者则为电感耦合,高频机与D电路也是电容耦合,因此,当D电路谐振时U1和U2之间的相位差Dw = p/2,失谐时,Dw
根据这种关系,我们选用XR-2208M乘法器作为相位检波器,该乘法器输出频率可达100MHz,组成1808相位检波器,其输入两信号的相位差与输出直流电压之间存在下式关系:
Dw ——输入两信号的相位差
Kd ――是相位检波器的转换增益,在输入信号/50mV.rms时,Kd ≈ 2V/弧度。并与信号幅度无关。
本相位检波器的输出电平有三种状态。
当Dw = p/2 时,VDw = 0 (谐振)
当Dw
当Dw > p/2 时,VDw <0 (失谐)
3. 可编程控制器(PLC)
我们选用日本松下电工面向运动控制的PLC,具有2路10KHz脉冲输出;2通道输出时,每通道高5KHz。且具有两路A/D和一路D/A。
4. 德国百格拉三相混合式步进电机及驱动系统
驱动器WD-007采用交流伺服原理工作,输入电压220VAC,控制脉冲信号电压为5VDC,输出为3x325VAC,有过热、过流、欠压、过压保护,电机每转步数可依用户要求分别设定为500、1000、5000、10000步/转。
步进电机采用VRDM-3910,大扭矩4Nm。
5. 机械传动部分
粗调采用蜗轮、涡杆传动,它的优点是可自锁,但传动效率低、功率损失大。细调为伞齿传动 。蜗杆的螺距为2mm, 伞齿的螺距为0.5mm。脉冲当量小可达0.004mm/脉冲,可满足调谐要求。
三、实现方法及编程:
我们对D电路的调谐是通过对PLC输出脉冲的编程实现的。自动调谐的实现过程是,把鉴相器的输出送给A/D转换器。根据A/D值进行判断,通过程序控制脉冲输频率和方向,结合使用上述的三相混合式步进驱动器、步进电机及机械传动系统,完成电容板的位置移动,从而实现D电路的jingque调谐。(如图3)
如图3
编程利用PLC脉冲输出指令F168(SPD1)可以实现梯形控制,根据指定的初速度、大速度、加/减速时间和目标值能够自动输出脉冲。指令F169(PLS),可以在执行条件(触发器)处于ON状态时执行JOG(点动)操作、从指定的通道输出脉冲。利用增量型、值型、原点返回控制模式并配合系统寄存器进行输出脉冲编程,省略了行程限位开关,减少了系统布线,提高系统的灵活性。
具体编程方法如下:利用PLC指令F168(SPD1)根据给定的参数表自动执行梯形控制。
以上程序通过输出端Y0输出的脉冲初始速度为500Hz,高速度为5000Hz,加减速时间为200ms,总移动量为10000个脉冲。
这时,高速计数器经过值(DT9044和DT9045)会随脉冲数增加。
脉冲输出指令(F169)
当执行条件(触发器)为ON时,本指令从指定的通道输出脉冲,执行JOG(点动)运行。
当X2处于ON状态时,Y0发出频率为300Hz、占空比为10%的脉冲。此时,方向输出Y2为OFF,高速计数器CH0(DT9044和DT9045)的经过值计数增加。
当X6处于ON状态时,Y1发出频率为700Hz、占空比为10%的脉冲。此时,方向输出Y3为OFF,高速计数器CH1(DT9048和DT9049)的经过值计数减少。
四、结论:
1、该自动调谐系统采用PLC作为控制设备,用软件编程完成各信号的逻辑关系处理及脉冲输出编程,简化了硬件电路的设计,提高整个系统的灵活性。
2、PLC是专为工业控制设计的,以集成电路为基本元件的电子设备,在设计和制造过程中采取了多层次抗干扰和精选元器件措施,内部处理不依赖触点。适合于加速器高频系统强电磁的运行环境,从根本上保证了控制系统的稳定性和可靠性。解决了控制设备在强电强磁环境下稳定工作的要求。
目前,这个系统的安装调试已经完成,并以投入使用。基于PLC的加速器高频D电路频率自动调谐系统运行稳定,达到了1*10-6 的频率稳定度设计的预期目标。
- 扬州西门子S7-300代理商 2024-05-08
- 盐城西门子S7-300代理商 2024-05-08
- 淮安西门子S7-300代理商 2024-05-08
- 连云港西门子S7-300代理商 2024-05-08
- 南通西门子S7-300代理商 2024-05-08
- 苏州西门子S7-300代理商 2024-05-08
- 常州西门子S7-300代理商 2024-05-08
- 徐州西门子S7-300代理商 2024-05-08
- 西门子模块PLC总代理商 2024-05-08
- 无锡西门子S7-300代理商 2024-05-08
- 南京西门子S7-300代理商 2024-05-08
- 江苏西门子S7-300代理商 2024-05-08
- 绥化西门子S7-300代理商 2024-05-08
- 黑河西门子S7-300代理商 2024-05-08
- 牡丹江西门子S7-300代理商 2024-05-08