西门子6GK7243-1EX01-0XE0产品特点
可编程逻辑控制器(PLC)是八十年代发展起来的是集自动化技术、计算机技术和通信技术于一体的新一代工业控制装置。
根据我国北方水资源相对缺乏的现状,利用PLC控制水泵进行直接供水,实现无塔供水,故恒压供水显得尤为重要。
2 硬件设计
2.1 系统控制框图(见图1)
(图 1)
2.2 系统基本工作原理
首先根据供水楼层来设定供水压力,以保证高层有足够的压力。因为当用户用量增大时,压力传感器检测到的水压就变小,这时实际水压与设定水的偏差越大。根据偏差的大小来决定启动泵的数量,此时必须加大liuliang,以满足用户的增多;当用水量减少时,输出的压力就会增加,偏差越小,根据这个偏差值来决定关闭泵的数量,用来大限度地节省电能。当发生火灾时,四台泵同时起动,以保证大的供水量。利用泵的数量来满足用水量以实现恒压供水。
2.3 系统硬件配置
三菱变频器 1台 热继电器 4台
接触器 8台 变频电机 4台
空气开关 1只 三相保险盒 6套
上位计算机 1套 模拟量模块 1 块
三菱通讯卡 1套 三菱PLC 1台
2.4 系统软启、软停主电路:(见图2)
(图2)
2.5 系统结构框图
为了实现恒压供水,要求这种控制系统具有很大的灵活性。控制参数易于变动,数据记录功能完善。针对这些要求与特点,确定控制系统采用两级监控制方案,结构图如右(见图3):
(图 3)
2.6 系统工作方式选择
该系统可以用转换开关选定系统手动、自动工作方式。手动、自动时每台水泵均可由变频器进行软起动、软停止,四台水泵二用二备、并能自动识别。当用水量小时一台水泵运行,用水量大时二台水泵运行,火警时四台水泵同时供水。利用程序进行定时选择水泵工作方式。在自动运行过程中,若两台水泵供水压力低时既可由软件自动嵌入第三台水泵工作,也可手动起动第三台水泵,投入运行。在手、自动时每台水泵均由变频器按水泵工作曲线切换,通过对变频器编程。编程思路:转速n小时频率f低,但频率f不能低于6Hz, 否则电机会处于弱磁状态;n增加时f上升,n稳定在额定值时f = 50Hz(或略低于50 Hz),变频器切换完成。
3 软件设计
3.1 控制程序流程图(见图4)
(图 4)
3.2 PID调节以实现恒压供水
该系统为了克服内存容量的不足,我们选用增量式PID控制,即输出量是两个采样周期值之差e(k),控制器的输出增量为△U(k)。表达式如下:
△U(k)=U(k)-U(k-1)
=Kp{e(k)-e(k-1)+ T* e(k ) /T2+T0[e(k)-2e(k-1)+e(k-2) ]/T}
=Kp[(1+T/T2+T0/T)*e(k)-(1+2T0/T)*e(k-1)+T0*e(k-2)/T]
=K1*e(k)-K2*e(k-1)+K3*e(k-2)
其中:K1、K2、 K3为经验系数,需要现场调试修改。
e(k)、 e(k-1)、e(k-2)为对应采样时刻的偏差。
当用水量增加时,Uf减小,e(k)增大,需要添加水泵供水,以达到设定水压,通过这种方法实现恒压供水。增量式控制程序框图(见图5)。
3. 3 数字滤波来保证采样数据的准确性
为了防止瞬时抖动,tigao采样数据的准确性,采用两种处理方法:
1、当采样值比大值还大时,我们取大值为这次的采样值。
2、考虑到精度的要求不高,我们采用数字滤波中的平均值滤波方法。流程图如下:
(图 5)
(图 6)
3.4 编程思路及安全连锁
工艺控制(控制对象主要是对4台水泵的控制)按用户用水量的大小,可自动完成工作过程的控制。利用优先级控制:压力的优先级比时间的优先级高,来确保压力恒定。通过对变频器的编程,使变频器按照水泵的特性曲线来工作,从而有效地使水泵的起动和停止较为平稳。换句话说,可实现水泵的软起、软停。
为了降低系统成本,打破常规思维,我们对热继电器的状态不进行检测,利用热继电器的常闭触点(用继电器控制思路)对它所保护电机的接触器线圈实行硬件闭锁,利用程序对各控制电机实行软件闭锁。根据配水厂的要求可现场任意修改联锁方式:下位机程序联锁、上位机程序脚本联锁。
通过上述三种联锁方式,足可以保证工作过程、人员与设备的安全。
3.5 工作数据的处理
对文中的配水装置而言,数据查阅功能显得尤为重要。通过对配水历史数据查阅,可以系统的分析用户的总用水情况,为降低供水成本修改程序提供依据。通过对动态数据的查阅,可以使系统管理员对系统的动态过程能够很好的监控,从而有效地、合理的分配水资源。在上位计算机的Win—BC组态软件中,通过标鉴记录可实现上述功能。
3.6 报表输出及监控
在配水实际过程中的报表可分为两类:(1)定时报表(例如:小时数据流水帐报表);(2)动态数据分析报表。在上位计算机的Win—BC组态软件中,报表的编辑器可实现这些功能:将鼠标放在某一对象上,可弹出相应的文字说明并持续一段时间,有助于操作人员对配水流程的进一步了解。
4 结束语
本文所描述的增量式PID控制的DCS系统完全能满足配水厂的供水要求,且具有功能完善、使用方便、控制jingque等特点,稍加变化可适合任何需要恒压liuliang(液压)系统。该系统
城市生活垃圾、工业垃圾、医院卫生废弃物、淤泥和废橡胶轮胎等垃圾焚烧处理技术,利用垃圾焚烧的余热发电,变废为宝,将是今后环保技术的一个重要发展方向。这种垃圾焚烧日处理废物能力为1~350t,余热锅炉的热容量小,发电机组小,一般为20兆瓦以内。因此,垃圾焚烧发电厂的控制系统比大型电厂简单得多。一般来说,大型电厂的主机控制系统是无法采用PLC来控制的,只有一些辅机系统才能够使用PLC。但是,随着现场总线技术及微处理器性能的突飞猛进,PLC集散控制系统已经成功应用在中型及较复杂的控制领域中,例如,垃圾焚烧发电厂就可以使用PLC控制系统,这样可以大大降低控制系统的成本。
本文将介绍广东省南海市垃圾焚烧发电厂PLC控制系统,此控制系统由珠海市广东亚仿科技股份有限公司成功开发,并一次成功投入生产运行。
2 控制系统总体方案介绍
制系统采用Siemens S7-400系列PLC,Siemens公司的S7-400系列PLC是90年代推出的S7系列中的大型机型,具有完善的功能和强大的通讯能力,特别是总线之一的Profibus,得到很多厂家的支持,非常有利于分布式控制系统的使用,Profibus-DP总线的通讯速率可达12Mbps。S7-417H双机热备系统和ET200M分布式I/O组成的Profibus-DP总线网构成切换结构,实现故障时的无扰动自动切换,可用在安全性能要求极高的控制系统中。但是S7-417H双机热备系统造价相对昂贵,为了减少硬件投资,可以选用软件双冗余(用416CPU进行双机热备),采用分布式I/O的Profibus-DP现场控制总线,上位机与PLC之间采用OSM/ESM环形100兆工业以太网光网进行通讯, 上位机采用Intouch7.1组态软件进行系统组态。该厂的垃圾焚烧工艺引进美国Basic公司的专利技术,采用四级脉冲炉排,各项指标均达到国际环保要求, 一期日焚烧处理垃圾200t。该工艺技术在我国具有实际推广的应用价值。
(1) 工作原理
垃圾经自动给料单元送入焚烧炉的干燥床干燥,然后送入炉排,炉排在脉冲空气动力装置的推动下抛动垃圾,垃圾与炉排片上的均匀气孔喷出的助燃空气混合燃烧,燃烧产生的热量由余热锅炉回收。余热锅炉产生的高温高压水蒸汽推动汽机发电,燃尽后进入灰渣坑,由自动除渣装置排出。由主燃烧室挥发和裂解出来的烟气进入第二、三级燃烧室,进行进一步燃烧,使烟气的温度高达1000℃,烟气在此停留时间不少于2s, 使有毒的烟气迅速分解,后经烟气处理设备及除尘设备(电除尘、布袋除尘)处理合格后排入大气。
(2) 环保发电厂主要设备
① 焚化炉锅炉2台,每台主要的技术参数如下:
垃圾处理量: 8.33t/h
产生蒸汽量: 22.5t/h
过热蒸汽压力: 4.0MPa
过热蒸汽温度: 400℃
炉膛温度: 980℃
给水温度: 145℃
② 汽轮机发电机组一套,主要的技术参数如下:
主蒸汽压力: 3.9MPa
主蒸汽温度: 390℃
③ 发电机主要的技术参数如下:
功率: 12000kW
出线电压: 10.5kV
频率: 50Hz
额定转速: 3000r/min
功率因数: 0.8
励磁方式: 无刷励磁系统
④ 烟气处理系统两套
⑤ 配套电气供配电系统
该PLC集散控制系统I/O点数有3000余点,其中模拟量300余个。全厂的PLC集散控制系统图如附图所示。
附图 全厂PLC集散控制系统图
3 上位机监控系统配置
系统共设4台操作员站,1台工程师站。其中2台操作员站用于炉侧设备的监控,包括焚烧炉、锅炉两套系统,烟气脱硫系统,除灰系统;另2台操作员站用于机侧设备的监控,包括汽机系统、制给水系统、废水处理系统、电气及其它部分。炉侧的两台操作员站和机侧的2台操作员站均为双机热备。炉侧和机侧的操作员站之间功能独立,不能互换操作。工程师工作站,进行系统软件开发组态和警报顺序事件记录,工程师站将能够作为任一操作员站完成相关控制监测功能。工程师站、操作员站及PLC之间采用OSM/ESM环形100兆工业以太网光网进行互连通讯。操作系统采用中文bbbbbbs NT 窗口操作系统。
、前言
四连杆装箱包装机是一种一次可以装四箱(可以是纸箱)既4×4瓶或者三箱 3×4瓶的连续装箱的包装机械设备。在啤酒等瓶装饮料行业中,四连杆装箱包装机主要完成瓶装产品的装箱、卸箱等工作。由于具有性能优良等特点,在包装行业中使用非常普及。
对于四连杆装箱包装机中电气部分的控制,是包装机使用安全、可靠性的重要保证。目前,老型号的四连杆包装机的电气装置大多采用继电器的控制方式。这种控制方式连线复杂、继电器使用数量多,造成电气控制部分可靠性差、故障率高,日常维护量大。同时,设备缺少操作的安全保障措施,容易发生事故。
随着可编程控制器(PLC)技术的发展,把PLC控制技术应用于四连杆包装机的控制中,取代原有的控制线路。是四连杆装箱包装机控制系统发展的必然趋势。
二、系统结构
四连杆装箱包装机控制系统由电气部分和气动执行部分组成。工作过程见流程图(图1)。
电气系统输出控制在电气控制部分的改造中,分析了包装机的工作过程和控制特点;对包装机的控制基本上都是光电开关、接近开关、电磁阀、电机等这类的开关量输入、输出设备。控制过程以连续的逻辑量控制为主的操作方式。PLC的开关逻辑和顺序控制是PLC应用广泛、基本的功能,基于PLC的这一使用功能和特点,决定将原有继电器控制系统全部拆除,采用PLC控制。因为该用户厂家其他自动化设备使用的基本都是日本Omron公司的PLC,再根据采集和控制点数,我们选用Omron公司的SYSMAC CPM2A-60CDR-A的 PLC作为系统控制器。
三、系统设计
1.四连杆装箱包装机的电机可以进行点动、正转和反转,以带动夹瓶装置做往复运动装箱。瓶电机和两个箱电机分别用作传输瓶和传输箱。七个电磁阀和与之对应的气缸,分别控制“夹头”,“定位器”,“出箱臂”及“进箱臂”“箱导向”。设“手动”和“自动”操作两个切换开关。
2.在包装机的操作前台和设备后台、侧面加装3只光电检测开关,在操作人员误入设备危险区域时,系统紧急停车,保证安全。
3.在传送带上安装Omron的E6A2旋转编码器,测量传送带的速度。当传送带电机异常停车时,停止包装机工作。
4.系统输入回路中有光电开光和接近等开关,PLC上的DC24V电源容量就不足了,各输入、输出元件均使用DC24V直流稳压电源。PLC控制系统原理图见图(2)。
5.为了使PLC系统安全可靠运行,采取了多种防护措施,如和系统中的强电设备分开接地,接地线的截面积大于2平方毫米。PLC输入和输出的感性负载都并联续流二极管等,以消除输入触点在断开时,感性负载因储能作用而产生电弧高于电源电压数倍甚至于数十倍的反电势对系统产生的干扰。见图(3)
6.系统的输入部分36点,输出19点,一共占用PLC 54点,系统冗余6点,符合自动化系统设计要求。
四、程序设计
PLC程序采用梯形图编写,其自动控制操作流程图见图(4)。
其中,PLC主程序参照原有继电器控制系统的电气控制原理图进行设计,这种程序设计方法简单,有现成的电气控制线路为依据,设计周期短,在旧设备电气系统改造中经常采用。
按照原有电气控制系统输入信号及输出信号做为PLC的I/O点,原来由继电器硬件完成的逻辑控制功能由PLC软件——梯形图替代完成。图(5)为四连杆装箱包装机进箱臂部分电气控制原理图。图(6)为转换后的四连杆装箱包装机进箱臂部分PLC程序梯形图。进箱臂部分主要I/O对照表如下:
五、系统调试
1.调整光电开关SQ1和反射板的安装距离,使光电开关处于工作状态时,调整到“挡光”,PLC输入通道HR0003的指示灯亮。以同样方法调整好光电开关SQ2、SQ3、SQ4……..SQ10。
2.调整接近开关JQ0,使“夹头”在运动轨迹的低点时接近“档块”,并使PLC输入通道HR0012指示灯亮,以同样方法调整好接近开关JQ2、JQ3、JQ4、JQ5。
3.调试旋转编码器时,A、B、Z相按说明书接线,在PLC编程软件中对编码器的高速计数进行设置,使用Z相加软件复位方法。见图(7)。按下按钮5SA,使传送带电机停车时,四连杆装箱包装机应停止工作。
4.按动相应的按钮,分别控制进箱电机、出箱电机、瓶电机的开、停。关机以后将开关位置置于“关”。1SA和2SA分别控制“出箱臂”和“瓶定位”,10SA,15SA控制“导向”和“变距”。
5.在上述“动作”都已正确时,将“手动”转为“自动”,按下“整机启动”按钮,调试PLC逻辑程序。进行自动装箱包装操作。
六、结束语
经PLC改造后的四连杆装箱包装机电气控制系统,外观上;物理接线量大大减少,控制柜体积缩小,柜内的原器件排列有序。运行效果上;经设备运行证明,自动化程度大大优于原系统控制效果。控制可靠性大大tigao,减轻了现场操作人员的劳动强度。由于系统在整个包装流水线和包装机设备的危险位置安装了光电位置检测开关,tigao了操作的安全性。总体上tigao了企业的经济效益。