6ES7212-1AB23-0XB8多库发货
一、现场总线技术的兴起和市场动力
七十年代,微处理器技术的进步以及“集中管理、分散控制”的风险控制策略促成了基于微处理器芯片的集散控制系统开始进入市场,同时也将用于控制器之间和控制器与上位机之间的数据通讯的计算机通讯网络技术引入了工业自动化领域。但此时由于各自动化厂商的控制系统自成一体,网络通讯只是其系统的内部功能之一,无需与外界进行数据交换。八十年代以后,随着微处理器芯片应用的不断渗透,“智能化”的传感器、开关、执行机构等工业现场控制器件不断涌现,但各厂商根据所生产的元器件的特点而开发的数据通讯协议也是五花八门、种类繁多,单个的元器件似乎充满了“智能”,但与控制系统集成时仍然只能沿用传统的电缆接线一对一接入I/O接口板,并不能真正体现其“智能化”的优点。因此要将这些众多不同厂商的“智能化”现场控制元器件集成为一个完全数字化的集散控制系统,公共开放的网络通讯协议标准就显得非常必要。在这一市场动力的推动下,各控制系统(包括PLC和DCS)的生产厂商基于其原先内部专用的网络通讯技术纷纷提出了各种各样开放程度不同的现场总线通讯协议标准,并随着技术的进步不断补充和完善。
二、现场总线技术标准化的现状
从上世纪八十年代开始,美国仪表协会(ISA)和国际电工委员会(IEC)即已设立专门的机构来研究和提出现场总线技术标准。然而由于种种原因,经过长达十多年的努力,终于在2000年颁布的IEC61158却是一份让所有自动化领域相关人员感到困惑和尴尬的标准,因为它包含八种互不兼容的总线协议。随着IT技术不断向工业领域渗透,以太网(Ethernet)作为新的现场总线技术让很多人充满了期望,但2003年第三版的lEC61158标准的颁布,在新版本中增加了三种基于以太网技术的新协议,将总线协议的标准增加到十一种,同时还有更多的基于以太网技术的新协议正积极努力加入到标准的协议集内。
三、现场总线技术标准化进程的分析思考
分析用户的需求,我们大致可以将用户对现场总线的技术要求和期望分为以下三个层次:
1) 智能元器件与控制器(站)之间的互连互通,主要目的是替代传统的I/O电缆。其要求是能传送传统的I/O数据,并附加传送一些智能元件特有的告警和故障诊断信息。
2) 在传送以上实时监控数据的基础,用户进一步的要求是希望通过网络来进行集中的工程设计组态、程序动态修改下载以及元器件的远程诊断和校准等。
3) 在互连互通的基础上,用户希望能够在各种情况下“重构”系统,如在元器件损坏更换、系统改扩建以及系统升级或部分升级等情况下,要求能够无障碍地接入第三方的元件或新技术条件下的升级产品。
从以上用户的需求上可以看出,用户是希望通过现场总线技术,利用网络数据通讯的手段实现各种智能元器件与控制器(站)之间的“互连”、“互通”、“互换”,但并没有要求说所有这些功的必须在一个“单一”的统一网络来实现。正如在Internet网络上用户希望实现电子邮件、文件下载、网络浏览、网上游戏等服务,但这并没有要求Internet网络必须是一个“单一”的“同构”网络。
从通讯协议的构筑模型上看,目前几乎所有的通讯协议一般来说都是参照OSI的七层模型,但绝大多数协议都是从物理层开始“自底向上”自成一体地构筑一个“垂直一体化”的协议栈,使得八种标准协议之间在任何层次上都很难“互连”、“互通”,更谈不上“互换”功能。事实上制定OSI分层模型的目的是让涵盖不同技术元素不同发展变化速度的通讯实体分为相互独立的层次,以使各层次既能够相互结合成为一个端对端完整的协议栈,又能够相互独立发展而不互相制约。比如在我们熟悉的Internet网络协议簇中,因特网之所以能够如此成功,就是以TCP/IP协议栈为核心,对上可以服务众多不同的应用层协议(WWW、FTP、电子邮件等),向下则可在众多不同的局域网(Ethernet、FDDI等)、广域网(拨号网络、X.25等)平台上实现。
从某种意义上来说,现场总线技术的标准化进程出现目前困境的原因很大程度上可能是当初一开始就将“单一的垂直一体化的同构网络”这一过于“理想”的期望设定为技术标准的目标,结果不但不能达到目的,反而适得其反,出现了“群雄纷争,互不兼容”的局面。
四、CIP协议架构的启发
CIP协议规范是叠加在ControlNet、DeviceNet和EtherNet这三种完全不同的网络技术平台之上的“与网络硬件技术无关”的公共的“网络传输层、应用层、用户层”协议规范,也就是说它可以实现“异构网络”下的系统的“互连”、“互通”,直至“互换”功能。按照OSI七层通讯模型,CIP协议架构下的协议栈结构如下图所示。
由以上示意图可以看到,与其它现场总线技术通讯协议一个很大的不同就是有一个具有“网络传输层”功能的“CIP Messaging”协议规范。其中核心的部分就是将应用对象之间通讯关系抽象为“连接(Connection)”,并与之相应制定了应用对象的逻辑地址规范,从而使CIP协议可以不依赖于某一具体的网络硬件技术,而是用逻辑对象地址来定义“连接(Connection)”关系。
并将某一种具体的网络技术平台抽象为与网络接口相关的“物理链路对象(bbbb bbbbbb)”,这样使得CIP协议在不同的网络技术平台上具体实现时唯一需要的接口就是与该网络平台相对应的“物理链路对象(bbbb bbbbbb)”,如“DeviceNet bbbb bbbbbb”、“ControlNet bbbb bbbbbb”和“Ethernet bbbb bbbbbb”等等,而其上层的协议都可不受影响并保持一致,这也就为在跨平台的“异构网络”条件下实现系统的“互连”、“互通”,直至“互换”功能奠定了基础。
更进一步,与其它众多“自底向上”构筑“垂直一体化”通讯协议的现场总线技术不同,它不是根据物理层和数据链路层所能提供的通讯服务原语来定义“连接(Connection)”关系,而是“自顶向上”,根据来自“用户层和应用层”的用户和具体应用领域的实际数据通讯需求, 将“连接(Connection)”关系又细分定义为以下三种类型:
I/O Connection:主要是针对传送用于监视、控制等有一定的实时性要求的数据时的通讯关系,其中绝大部分应该是传送传统上用于实时监控的I/O数据,故以此命名。这种“连接(Connection)”关系的特点是必须预先通过配置工具逐一对与该“连接(Connection)”相关联的应用对象及整个数据链路上的各个节点进行配置和分配固定的资源后才能建立起来,其优势就是一旦建立起这一“连接(Connection)”,则所有加入这一通讯关系的应用对象之间已经对数据内容达成共识,因此所有传送数据均为“元数据”,无需对数据类型或数据本身作任何标识说明或功能描述,传输效率高,而且整个数据链路已预分配资源,传输可靠性也高,所以可以满足“实时”控制数据的传送要求。
Explicit Message Connection:主要是针对传送用于工程设计组态、集中管理维护、故障诊断调试等过程中所需传送的非实时信息。它通常是通过点对点的报文传送在两个应用对象之间以相互交互的方式传送,由于报文中的数据内容会随着双方的状态变化和交互过程而变化,因此报文本身必须同时携带对传送数据的类型标识和功能描述,因此将其命名为“显式报文连接(Explicit Message Connection)。这种“连接(Connection)”关系的特点是通讯双方的任何一方应用对象均可应自身的信息传送需求动态发起和建立这种“连接(Connection)”关系,而且是“点对点”的“双工”通讯模式,非常便于应用对象之间的“交互式对话”。通讯过程结束后即拆除“连接(Connection)”并回收资源,这一模式对“阵发式”信息类数据传送是非常合适的。
Bridged Connection:由于在任何一个较大规模的系统中都不可能或不会将所有的控制元器件集中在一个物理网段中,即一般都可能配置成多个网段互连,可能是“同构网段”,也可能是“异构网段”。而当若有数据需从某一个网段传送到另一网段时,不论是I/O数据还是Explicit Message,则其所要经过的跨网段的中间节点(Bridge)必须承担路由所需的“连接(Connection)”关系,实际上即是该节点必须在其内部分别创建与每个网段“bbbb bbbbbb”相应的“背靠背”的“连接(Connection)”对象。
纵观整个CIP协议规范,其中具特色的是其“Connection”这一抽象对象,以及非常符合“控制和信息”传送需求的“Connection”分类模型:“I/O Connection”、“Explicit Message Connection”、“Bridged Connection”。这使得CIP协议真正成为一个“与网络硬件无关的具有路由功能的跨网络的网络通讯协议”,同时也使得它成为在“异构网络”环境下实现系统的“互连”、“互通”,直至“互换”功能的核心技术规范。
五、结论
通过对目前各种现场总线技术通讯协议的研究分析认为,现场总线技术的标准不应该设定为一个从物理层/数据链路层直至应用层和用户层的“垂直一体化”的单一标准,而应该是按照技术元素发展变化的特点,分层次构筑各层次的既相互配合又相互独立的技术标准,这样既允许多种技术协议并存竞争,又能促进实现标准化进程的“互连”、“互通”,直至“互换”的目标。其核心部分或许可以放在与TCP/IP协议功能相当的“网络传输层”,CIP协议规范中“连接(Connection)”这一模型是一个很好的范例
1 概述
计算机具有强大的运算、存储、逻辑判断等信息加工能力,从它诞生开始就被应用到控制系统中,特别是微处理器的出现,进一步扩大了计算机的应用范围。在计算机上配以自动化组态软件可以更直观、更方便地对生产过程进行监视和控制,充分发挥计算机的复杂数据运算处理、报表统计和图形显示能力。
可编程控制器(PLC)具有抗干扰能力强,可靠性高,便于扩展,使用方便等优点,正在越来越广泛的应用于工业生产过程中。随着生产水平不断提高,人们更愿意使用多台网络化中小型PLC 而不是用一台或数台超大型PLC 来包揽全局。适当分散的中小PLC 所控制的范围不大,不仅降低了风险,往往还可以简化许多热备冗余的配置,降低设备成本。
当前应用为广泛的计算机网络技术是以太网技术,符合公共标准的TCP/IP 协议的以太网使得上层计算机系统通过以太网访问车间级数据,为全厂范围控制系统的数据汇集和监视创造条件。它的开放性协议使得各种计算机和不同厂商的PLC 可以互连,在必要时也可以进行一些控制和协调。而且人们对以太网技术很熟悉,可以降低系统的开发、培训和维护的费用。
现场总线是一种互联现场自动化设备及其控制系统的双向数字通信协议,现场总线使控制功能适当分散到现场设备,系统的自立能力增强,节约机柜空间,使现场的电缆连线大量减少。现场总线具备可靠性高、稳定性好、抗干扰能力强、通讯速率快、系统安全符合环境保护要求的优势。
总之企业的系统生产过程是很复杂的,设备分布广,各工序各设备并行地进行工作,因此用数台PLC对生产过程进行实时控制,用一台或数台微型机作为监控系统的上位机,上位机通过以太网与PLC 相连,实现对现场数据巡回采集、集中处理,在实际应用中还可以利用上位机对PLC 进行远程编程或对程序中的参数进行设置或修改。以太网可以达到很高的通信速率,利用以太网的优点,结合PLC 控制器及现场总线,就可以构成全分散、全开放的集散控制系统。下面以某厂打叶复烤线控制系统为例对集散控制系统进行说明。
2 系统组成
依据分散检测控制、集中监控管理的原则,系统由集中监控层、设备控制层两部分组成。图1 为该打叶复烤线集散控制系统示意图。
2.1 集中监控层(上位机)
由三台计算机和打印机构成。一台对烟叶预处理、叶梗分离、风送除尘三条线进行集中监控,另一台对烟片复烤、烟梗复烤、预压打包三条线进行集中监控。一台用作编程工作站。
2.1.1 集中监控层软硬件配置
监控计算机选用配置为PⅢ1GHZ 以上主频,128M 内存,40G 硬盘的IBM 商用电脑,PHILIPS 21 寸显示器;打印机选用HP LJ5000 激光打印机;配置不间断电源(UPS),型号选用APC 产品,容量为2KVA。监控计算机操作系统配置安全性可靠性高的bbbbbbs 2000 中文版;监控组态软件选用Inbbblution 的FIX。
2.1.2 监控管理层的主要功能
a. 向下通过以太网与控制执行层进行数据通讯,通过简洁、直观的现场模拟图反映主要单机设备电机状态,各检测元件状态,各执行器件状态,主要设备参数和工艺参数等;
b. 显示主要工艺参数的变化趋势,如水分、流量、温度等,有助于工艺人员及时掌握工艺参数变化情况,稳定工艺,提高产品质量;
c. 以弹出窗口和表格形式显示故障信息,包括故障发生时间、发生位置、故障内容等;
d. 工程师站实现远程对PLC 编程、PLC 运行状况监测及程序修改等;
e. 向上通过以太网与企业管理层进行数据通讯,向厂领导和各职能部门发布生产和工艺数据,为厂里的决策提供依据,接受厂里的指令并打印各种报表等。
2.2 设备控制层
划分为烟叶预处理、叶梗分离、烟片复烤、烟梗复烤、预压打包、风送除尘六条生产分线, 设置六组对应的PLC 控制电控柜及相应器件,对六条生产分线分别执行控制。
3 系统以太网通信的实现
3.1 监控计算机和PLC 的配置
监控计算机采用3COM 公司的Etherbbbb Ⅲ网卡,对该网卡,可用bbbbbbs 自带的驱动程序进行配置。在FIX 应用程序的网络配置中,有两种协议:NetBOIS 和TCP/IP。选择TCP/IP,则数据传输速度快,适用于较多站点的网络。在FIX Driver Configuration 中,输入节点名、以太网址。并将节点名映射到单独的IP 地址,TCP/IP 采用多种方式处理名称辨识,采用本地HOSTS 文件方式具有高的可靠性。该文本文件存在各节点上。PLC 采用Schneider 公司的ETY110 网卡,必须对ETY110 正确配置节点名和以太网址,如果网上各PLC 及I/O Driver 都配置正确,则个设备之间可以建立通信。
3.2 FIX 组态软件与PLC 的通信过程
PLC 中有一个专门用来存放数据的数据块,组态软件的I/O 驱动程序从中读取数据,并将其传入驱动程序映射表的地址中,对应与点名。扫描、报警、控制程序访问点名,则获得数据,并将处理后的数据传输至过程数据库。内部数据库访问功能从本地或远程数据库中读取数据,并将这些数据传输至请求的应用程序中去。
4 系统中各站点的寻址
集散控制系统中实现分散检测控制、集中监控的关键之一是各通信实体的正确寻址。本系统中目的通信实体的一般格式为:网络号、站号、设备物理地址,设备物理地址一般是它的通信模块的地理位置,即其模块号、通道号和通道中的通信实体。
4.1 站内寻址
如打叶复烤线集散控制系统示意图所示,如PLC1 对UNI-bbbWAY 总线上第4 号变频器寻址,其目标地址为
4.2 站间寻址
如打叶复烤线集散控制系统示意图所示,如PLC2 对PLC1 的UNI-bbbWAY 总线上第4 号变频器寻址,其目标地址为:
在Schneider Premium 系列PLC 上总线模块和CPU 模块集成在一起,始终处于机架上0 模块位置,如选用TER 通信通道,通道地址为0,如选用PCMCIA 卡通信通道,通道地址为1。
5 结束语
正如上例打叶复烤线集散控制系统所描述的,集散型控制系统具有通用性强、系统组态灵活、控制功能完善、数据处理方便。显示操作集中、人机界面友好、安装简单规范、调试方便、运行可靠等优点。它能够适应工业生产过程的各种需要,提高生产自动化水平和管理水平,通高产品质量,降低能源消耗和原材料消耗,提高劳动生产率,保证生产安全,可有力地促进工业发展,创造出佳经济效益和社会效益。
1. 引言
电力系统是一个特殊的系统,其安全性、可靠性要求高,为了实现系统的安全可靠运行,必须实现电力系统的调度、运营和管理的自动化。随着电力系统自动化程度的提高,现场总线技术的日臻完善,以及电力系统减员增效要求的提出,实现电站综合自动化,从而达到无人值班,已成为电力系统自动化发展的趁势。目前,采用符合现代工业控制技术方向的高性能微控制器,现场总线技术,实时多任务操作系统等多项先进技术,能实现对中低压输配电线路及主设备的综合自动化功能。而且能集保护、监控 、调控、通信于一体,既可联网构成综合自动化系统,也可独立运行,既可适合有人监控中心,也可适合无人值班的要求。众所皆知,变电站综合自动化关键在于大量的现场采集信息和数据快速、准确,实时上传到监控中心,也能将监控中心下达的控制命令准确无误地发送到控制单元,及时采取措施避免事故发生,这就需要变电站综合自动化系统有可靠的通信保障。随着现场总线技术在电力系统自动化中的广泛应用,有效地解决了变电站综合自动化系统中的通信问题。
2. 变电站综合自动化系统
2.1 变电站综合自动化系统的构成
变电站综合自动化系统典型结构如图所示:
变电站综合自动化系统一般由站控层、通信管理层和间隔层构成的计算机监控系统,采用分布式结构,设备分为站控层、通信管理层及间隔层,间隔层原则上按一次设备组织,每一间隔层设备包括测量、控制、保护、信号、通信、录波等基本功能,并完成各自的特殊功能,系统能实现信息共享及保护、监控功能的综合化,极大简化二次回路,节省系统投资,由于间隔层设备可放在开关柜或一次设备附近,大为减少主控室面积,节约控制电缆,大大提高了整个系统的可靠性和可扩展性。通信管理层由于各间隔层设备通信协议的多样性,要实现不同装置的数据链接,可加入前置机(通信管理装置)完成通信控制和规约转化,使其在功能上实现通信接收、发送、规约转化等功能;通信协议采用电力行业标准协议,能实现不同厂家设备的互联,采用全球定位系统(GPS),支持硬件对时网络,减少GPS与设备间的连接,并保证对时精度,硬件上采用模块化设计以支持多种通信接口,包括以太网、串行通信接口、可扩充的其他现场总线接口等;软件上具有规约库以支持RS-232、RS-485、LONWORKS及标准网络协议(TCP/IP)等多种类型的标准通信接口,从而具备良好的软、硬件扩展性。站控层包括数据库服务器、Web服务器、运行工作站、维护工作站、监视工作站等。
2.2 变电站综合自动化系统功能
以某110KV变电站为例,根据变电站高压供电系统一次系统的整体要求,变电站综合自动化系统决定采用CL2000变电站综合自动化系统,在此,结合工程实践,介绍该系统用于变电站监控系统中的经验。
变电站综合自动化系统由/01微机线路保护装置,WBH-90系列微机变压器保护装置,ZBH-91A/05变压器本体保护装置,WBH-92A/02微机变压器后备保护装置,WMC-31A03微机母线差动保护装置,WBH-93A/02微机厂用电保护装置,WBT-31A/01微机备用电源自投装置,微控制器SAB-C167CR(SIEMENS公司产),工作站微机及相应设备组成。CL2000变电站综合自动化系统系列保护装置具有一般的主要功能,如开关量的变位遥控,电压电流的模拟输入,断路器遥控分口,脉冲累加,遥控事件记录及顺序记录(SOE),逻辑闭锁等。
/01微机线路保护装置是多CPU并行设计,距离保护,零序保护及录波,测距分别由单独CPU完成,各CPU插件在电气及结构上相互独立,无依赖关系,它能实现以下功能:
(1)保护功能:a) 三段式相间距离保护; b) 三段式接地距离保护; c) 四段式零序方向过流保护;d) 故障测距; e) 振荡闭锁; f) 三段式反向及低压闭锁过流保护; g) 检无压、检同期三相一次重合闸,手动同期合闸; h) 低周低压减载保护; i) 过负荷保护或报警; j) PT断线告警。
(2)测量功能:a) 采集测量电压,三相或二相测量电流,计算有功功率,无功功率,功率因数; b) 测量频率,每周波72点自适应采样; c) 采用12路开关量; d) 采用4路脉冲量(正负脉冲 均可); e) 远方及本地操作。
3. 由现场总线技术实现的通信功能
通信功能是综合自动化出别于常规站明显的标志之一,通信网络变电站内间隔信息可充分共享,并通过通信接口与外界信息系统交换信息,同时节省大量电缆,构成一个快速、稳定、可靠的通信网络是变电站自动化系统的基本要求,也是电力系统运行管理功能的基本前提。
近年来,随着我国电力自动化的不断发展,电力系统通信方式也不断改进,现场在总线技术因其组网方便,抗干扰能力强等特点得到广泛应用。现场总线标准很多,电力自动化系统中常用的是LONWORKS和CAN总线。LONWORKS总线通信速率为78Kbps和1.25Mbps,CAN总线通信速率为1Mbps。CAN总线是一种有效支持分布控制和实时控制的串行通信网络,是一种通信速率可达1Mbps的多主总线[1]。具有优先抢占方式进行总线仲裁的作用机理,通信速率高,错误帧可自动重发,故障可自动隔离,不影响整个网络正常工作,可靠性高,而且协议简单,开放性强,组网灵活,成本低等特点,能为电力自动化提供开放性、全分布及可互操作性的通信平台。
CAN总线的主要特点:
(1)CAN为多主方式工作,网络上任意节点,任意时刻主动地向网络上其他节点发送信息,而不分主次,通信方式灵活,且无需站地址等节点信息;
(2)CAN采用短帧结构,数据多8个字节,这样不仅满足控制领域中传递控制命令,工作状态和测量数据的一般要求,且保证了通信的实时性,CAN网络上的节点信息分为不同等级,可满足不同实时要求,高优先级多可在134μS内得到传输;
(3)CAN采用非破坏性总线仲裁技术,当多个节点同时向总线发送信息时,优先级较低的节点主动退出发送,而优先级高的节点可不受影响地继续传输数据,从而大大节省了总线冲突时间。CAN的直接传输距离远可达10Km/ 5Kbps,通信速率高可达1Mbps/40m。可挂接设备多可达110个。CAN节点在自身发生错误时具有自动关闭功能,以使总线上其他节点的操作不受影响。
本系统间隔层主要由保护单元和测控单元组成,每个测控单元监控多路馈进馈出,采用先进现场总线CAN,现场通信采用双绞线,总线速率达1 Mbps,快速、可靠、方便灵活,通信规约支持IEC-60870-5-101格式,克服RS485网络上只能有一个主节点而无法构成多冗余系统的缺陷,具有很高的价格比。另外,采用双CAN现场总线内部定期对备用CAN进行备用检测,提高了内部网络的冗余度。
站控层采用双10 Mbps双绞线以太网结构(能保证变电站自动化系统内部通信网络传输的实时性),由双服务器组成,站控层为值班人员提供全厂系统的监视、控制和管理功能,界面友好,容易使用。通过组件技术,软件功能能实现“即插即用”,能较好地满足电气监控系统的需要,软件系统采用模块化结构,开放性较好。站控层操作系统可采用bbbbbbs2000/NT,数据库选用SQL服务器,软件主要功能模块有前置、数据库生成器、数据库组态、报表管理、报警信息、曲线、棒图、动作告警、SOE、事故追忆、录波分析、人机界面、自动抄表、设备管理、定值管理、设备在线诊断、系统组态等。电气监控系统中提供了故障信息传输系统、各级调度中心、电能计量系统、直流系统通信等接口驱动软件。
系统完成的主要功能有:实时数据采集与处理、数据库的建立与维护、控制操作、同步检测、报警处理、顺序记录(SOE)、事故追忆、画面生成及显示、在线计算及制表、电能量处理、远动功能、电气“五防”、时钟同步、人机接口、系统自诊断与自恢复、与其他智能设备接口、运行管理功能等。
4.主要软件设计
本系统中,微处理器SAB-C167CR的数据处理速度可达10 MHz,能完成所有测量、控制及通信等功能,其特点是任务较多,各任务之间协调较为复杂,为了便于个任务之间协调与功能扩充,CPU软件系统采用了实时多任务操作系统RTOS来优化和分配CPU时序和资源,保证程序的实时性和可靠性,以任务为对象进行资源管理,任务调度和异常处理,通过RTOS管理系统根据数据处理的轻重缓急来合理分配占有CPU,优化时序分时执行,使之不闲置,不拥挤,每个处理过程又有多个不同优先级别的任务组成,采用优先抢占操作方式有效保证任务执行的实时性,采用这一软件结构的突出特点是使程序实现了真正的模块化,各个任务单独编程,不受其他任务的影响,任务的增减,调度非常方便。
软件设计分为两部分:一部分是SAB-C167CR微处理器的软件设计,包括与间隔层设备间CAN总线数据传输及上位机UBS的数据通信(使用USB接口方便现场,即插即用,便于PC机的维护与升级,满足变电站数据通信的需要);另一部分为PC机上位机软件的设计。这部分上位机软件设计较为复杂,若采用面向对象的语言编写程序,可使用ActiveX控制实现数据通信。对于微处理器和上位机的软件设计,考虑到将来间隔层设备结构的变化和硬件升级需要,程序设计分为两层,底层负责数据接收和发送;上层负责数据帧上午打包、解包及协议的解释。
5. 结论
随着现场总线技术的发展和电气设备微机化程度的提高,为数字化形式实现变电站自动化监控系统提供了技术保证。变电站自动化系统应具有开放性,应能实现不同厂家设备的互操性(互换性)。因此,现场总线技术的应用是变电站综合自动化发展的需要,运用现场总线技术 ,能解决变电站综合自动化系统的通信问题,能保证数据通信的速度、质量、抗干扰能力,从而保证了变电站综合自动化技术的有效实施。