西门子模块6ES7235-0KD22-0XA8一级代理
西门子模块6ES7235-0KD22-0XA8一级代理
1、 引言
随着社会经济的发展,工业的迅速兴起,使得一些10KV配电系统大幅度增加,配电系统的简便性、可靠性、安全性、节能性、性价比显得尤其重要。
目前,传统的10KV配电系统还是采用继电器系统和分布监测计量、分布控制方式,而采用PLC(可编程序控制器)系统集中控制和集中监测计量方式,有利于提高配电系统的运行管理自动化水平,保证配电的安全稳定,还能减少运行人员的工作强度提,安全可靠。
2、 继电器系统和PLC系统的比较
PLC(可编程序控制器)是近几十年来发展起来的一种新型工业控制器,由于它编程灵活,功能齐全,应用广泛比继电器系统的控制简单,使用方便,抗干扰力强,,工作寿命高,而其本身具有体积小,重量轻,耗电省等特点。继电器系统有明显的缺点:体积大,可靠性低,工作寿命短,查找故障困难,特别是由于它是靠硬连线逻辑构成系统,所以接线复杂,对于生产工艺的变化的适应性差,不便实现集中控制;而PLC的安装和现场接线简便,可以应用其内部的软继电器简化继电器系统的繁杂中间环节,实现软接线逻辑构成系统,方便集中控制,除此之外,PLC还具有自诊断、故障报警、故障报警种类显示及网络通讯功能,便于操作和维修人员检查。
3、 集中控制、集中监测计量在10KV配电一次系统中的应用举例
在一个10KV配电一次系统中,有两台1000KVA变压器并联运行。图1为该配电一次系统的原理图。
3.1 PLC在集中控制中的地位
在配电一次系统中继电器系统主要集中在总受柜和变压器配出柜内,应用PLC系统来代替继电器系统,可以减少柜与柜之间的硬连线,省去很多继电器,简化工艺,降低系统制作成本,提高配电系统的可靠性,安全性和节能性。PLC系统框图如图2所示。
PLC是整个系统的神经中枢,所有控制,保护,工作状态指示都通过PLC内部的虚拟继电器通过软连线配合外部给定开关量和信号来完成。控制电压在安全电压以下,可以提高工作的安全性,远离高压室进行操作,可以避免工作人员的误操作,一站式控制,可以提高工作效率,减少工作人员的劳动强度。用两条现场总线就可以实现整个系统的信号传输,通过PLC的工作状态和报警指示,便于工作和维修人员的故障排除。另外,与继电器相比,PLC的免维护性高,工作寿命长。
3.2 PLC的I/O分配
10KV配电一次系统中,除了上电断电控制外,还有对变压器的过流,欠压和瓦斯保护。我们以欧姆龙CAMP2AH40点的PLC为例进行I/O分配,如表1所示。上断电控制是开关量,选用控制按钮即可,过流,欠压和瓦斯保护涉及自动检测技术,选用智能传感器来实现,可以提高保护的可靠性。
表1 PLCI/O分配表
3.3 10KV配电一次系统集中控制、集中监测计量的设计
配电系统是供电网的神经中枢。配电系统的正常工作和我们的生活保障及工作秩序密不可分,这就要求它有更高的可靠性;配电系统的智能化、节能、操作简便、方便维护是经济高速发展的需要;配电系统操作和维护对工作人员的安全系数要求更高、劳动强度更低和设备的性价比更高是用户所希望的。综合以上几点,我们对10KV配电一次系统作了如下改进,应用PLC对系统的总受柜、配出柜实现集中控制,应用数字仪表对系统进行集中监测计量。改进后的10KV配电一次系统框图如图3所示。
改进后,以综合柜为工作平台,在值班室,工作人员可以对高压室运行状态进行控制,既方便又安全;工作人员可以随时对监测仪表和计量仪表以及工作或报警状态进行记录,巡查,既方便又及时明了,还可以减少劳动强度。
采用微型计算机PLC实现继电保护和控制系统的操作,大大提高系统的自动化水平和可靠性,同时更加便于系统的集中控制和监测,方便了系统的信息化管理,大大降低成本,提高了工作的效率,具有一定的推广意义。
1 概述
我厂建于80年代初期,位于贵州省北部、距省会贵阳105公里,距遵义45km,原电站设计装机容量为630MW,安装3台单机容量210MW水轮发电机组。电站在系统中的主要作用是调峰、调频,承担系统事故备用,是一项以发电为主的综合利用工程。早期的机组自动化及其辅助设备完全采用电磁继电器方式参与控制,盘柜庞大、臃肿,接线复杂,其安全、稳定性能低,抗干扰能力差,设备故障、事故频繁发生。我厂机组及其辅助设备PLC改造大致分为三个阶段:90年代中期开始着手机组及其辅助控制设备的改造,于1996年底成功完成机组进水口闸门的PLC改造,是我厂的一次成功尝试;1998年初对3#发电机组进行自动化元件改造,1999年完成全厂辅助设备的PLC安装调试工作;2000年底至2001年初完成三台机组及公用系统的计算机监控系统安装调试,使我厂的计算机监控系统走向完善和成熟;更为乌江公司培养出一批实力雄厚的机组计算机监控技术人才。
2 PLC的运用范畴
2.1 机组的顺序控制
我厂的自动操作包括水轮发电机组各种工况转化,机组辅助设备的调整和对全厂的公用设备进行的自动化控制,这类控制在自动控制范畴内属于顺序控制系统,每个顺序控制都是按照生产流程的要求及生产设备的特点来设定。
2.2 根据操作对象可分为
2.2.1 机组自动操作
要求以一个脉冲自动按预定的顺序完成下列操作,即机组的自动开机至空载、开机至空转、发电转空载、发电转空转、发电转停机、发电转调相、调相转发电、调相转停机等,其操作对象包括水轮发电机及调速器、励磁系统、机组冷却系统等附属设备。
2.2.2 公用设备的操作
公用设备包括整个厂房排水系统、给排油系统、高低压压缩气系统、智能直流模块整流电源与蓄电池浮充系统、厂用电系统等,远线控制时还包括自动准同期并网装置。
2.2.3 全厂性的操作
全厂性的操作包括消防报警系统、通讯系统、开关站开关、刀闸设备等操作。
对以上这些自动操作的总体要求是运行安全可靠、维护方便、清晰明了、经济合理。
3 PLC在顺序控制中的运用
所谓顺序控制是指生产设备及生产过程,根据工艺要求按照逻辑运算、顺序操作、定时和计算数等规则通过预先编制的程序,在现场输入信号(包括开关量、模拟量)的作用下,执行机构按预定程序动作,实现以开关量为主的自动控制。我厂PLC的设计安装就是根据这一原则来实现的。其输入主要是靠按钮、行程开关、限位开关、动断触点等开关量为主的控制、信号。输出为继电器、电磁阀等驱动元件。PLC内部控制部分有定时器、计数器、中间继电器等元器件以及许多的常开、常闭触点 。而传统的顺序控制是由继电器控制屏来实现的,由于设备体积大、功耗高、动作速度缓慢、接线复杂、通用性、灵活性差、维护工作量大、故障频发率高而导致可靠性差,没有计算和储存功能,而PLC控制系统克服了继电器控制的弱点,把计算机技术与继电器控制有机地结合起来,为工业自动化提供了十分完美的现代化控制装置,其优越性主要表现在:
3.1 PLC是继电器、接触器、顺序控制器以及由中、小规模的集成电路及其它电气元件的复杂控制系统装置上发展起来的一种新型控制器,采用微电脑技术(大规模集成电路)取带了以往靠硬导线布线的逻辑控制器,具有成本低,功耗、体积小,重量轻等特点。
3.2 PLC 的配置
一套完整的PLC主要由6个模块构成:电源模块、CPU模块、热备模块(可选)、开入/开出(I/O)模块、A/O模块、通讯模块。其中电源模块向PLC提供直流24V工作电源;CPU是微型处理器(PLC的核心部位);热备模块是在两套PLC均为在线方式下互为热备用,并且可以人为任意切换至工作或备用状态,提高安全可靠性;开入/开出(I/O)模块是指外围回路向PLC输入高电平(或低电平)和PLC向外围回路输出高电平(或低电平);模数转换(A/O)模块是将外围设备输入的电信号转换成数字信号,以供PLC进行计算、判断、比较和传输(配置如图1所示)。
3.3 由于PLC容易与工业控制系统连成一个整体,易于扩展功能,具有接口简单快捷、工作量小、适合于较为恶劣的运行环境、故障率低、可靠性好、抗电气干扰能力强,维护方便等优点。
3.4 PLC采用扫描式的工作方式,特别适合于逻辑控制要求较高的顺序控制。
3.5 我厂的顺序控制系统流程较为复杂,90年代前期所用常规的继电器硬线控制方式规模庞大、维护困难、故障和事故发生机率较高,出现故障后不利于查找并消除故障,设备隐患较多,在我厂采用传统方式的继电器顺序控制方式,其安全生产记录常常打破,我厂采用PLC控制后,不仅提高了设备可靠性,而且对设备的检修维护都十分方便快捷,无需将机组及附属设备退出运行即可解决,大大提高了工作效率,而安全生产记录已接近3000天,创历史高记录。
4 机组顺序控制程序的设计
通过对已实施的进水口工作闸门、机组辅助设备PLC控制系统改造并结合其它电厂的成功经验,严格遵循电力生产必须安全可靠、经济使用、适合发展的原则,于2000年初我厂着手2#机组的计算机监控系统工程的调研和设计工作,并不断地派出工程技术人员与科研单位进行协作。首先根据机组整个生产控制过程的要求把程序进行分块;其次是合理利用指令,严格注意信号名称定义,利用各种方法正确地编写各个程序块的程序;然后经过单元调试,软硬件联调与系统总调,对程序进行不断修改和完善,经过不停的模拟试验后投入实际现场工作。分块结构的程序是根据工程的特点,把一个控制工程分成多个简单的、规模较小的控制任务;然后把这些控制任务分配给一个子程序块,并在子程序中编制具体任务的控制程序,后由一个主程序进行统一管理,以备流程需要时进行适时调用,如:自动开机至空转、开机至空载、发电转空载、发电转空转、发电转停机、发电转调相、调相转发电、
调相转停机等就是不同的子程序块。现以停机至发电子程序块程序逻辑为例,如图2。
1 滑差调节器的作用和工作原理
HL-2A托卡马克是我国的一个大型核聚变研究实验装置。该实验装置的供电系统是由电动机-飞轮-交流脉冲发电机组经过变压器和晶闸管变流器对负载线圈供电。对于这样的供电系统,若采用直接由电网供电的方式会对电网造成巨大的冲击和产生严重的电磁污染。因此,我们采用了国际上普遍的做法,利用装置的脉冲工作制,采取自电网取能经电动交流脉冲飞轮发电机组进行隔离、能量存储与转换、功率放大和释能的供电方式。也就是采用两套90MVA 交流飞轮发电机组(以下简称发电机组或机组)对该实验装置脉冲供电。整个机组由2500kW绕线式异步电动机、90吨飞轮、90MVA发电机组成。其工作原理是通过6000V电网供电给电动机,当电动机转动时带动飞轮和发电机运转并达到电动机的额定转速1477r.p.m,之后自由加速。这时在励磁机的作用下,发电机将储存于飞轮的机械能转变为电能供HL-2A装置放电使用。
实验装置中,液体转差率调节器(即滑差调节器)主要起两方面的作用。一、实现两套机组的起动过程。当机组经过盘车到转速12 r.p.m时,接入6000V电网的真空开关合闸,滑差调节器投入工作。随后通过调节滑差调节器中活动电极的高度使具有280t-m2飞轮矩的机组恒电流(I=230A)加速到额定转速1477r.p.m,然后自由加速。二、实现机组的调速。当脉冲发电机要给实验装置脉冲供电时,整个装置的实验放电对2500kW的电动机而言是一个很大的脉冲负载,迫使机组的转速下降,机组释放出飞轮储存的机械能,帮助电动机克服尖峰负荷。为了保护电动机以及减少电动机脉冲工作时对电网的冲击,在装置的实验放电之前,必须在电动机转子回路串入一个适当的电阻,也就是将活动电极提高到合适的高度(如图1中KB所示)。当实验放电完成之后,通过调节活动电极的高度使机组电流(I=230A)恒定,再加速到额定转速1477r.p.m,然后自由加速。如此重复调速过程,直到实验结束。
2 滑差调节器控制的硬件设备
图1 滑差调节器控制系统的硬件设备
滑差调节器控制系统的硬件设备结构如图1所示,它主要由电流比为400/5A的LQJ-10型电流互感器(图中101HL)、电流变送器、PID反馈控制调节板、稳压电源、PLC组成。其中的PLC采用的是日本三菱公司生产的FX-80MR型可编程序控制器,该PLC具有40个输入点、40个输出点,其CPU、RAM、通信功能等集成于一体,可扩展ROM,通过手持编写器可方便地输入和更改程序,也可通过加密码来保证程序的安全。
电流变送器将电流传感器输出的二次电流变换为直流电压输出。PID反馈控制调节板将给定值和电流变送器的输出信号相比较,通过PID控制直流调速电源的输出,从而控制电极提升电机的转速使液体电阻的活动电极随定子电流的变化而变化。整个控制系统实现了在电极下降过程中,当定子电流大于或等于230A时,活动电极静止;当定子电流小于230A时,活动电极下降,并且随着定子电流的减小,活动电极的下降速度也变快。
3 滑差调节器的PLC控制
3.1 滑差调节器的PLC控制概述
滑差调节器的PLC控制按照技术要求完成了对整个滑差调节系统的稳定、可靠运转的控制。其中包括控制两套机组的分时起动、分时再加速;对电极提升高度进行检测;与外界通信;对碱液循环泵进行过负荷、电源缺相的保护;对电极提升电机进行过负荷、励磁电流的欠流保护;对碱液进行温度监控等。
滑差调节器的PLC控制,利用了PLC的输入/输出继电器、辅助继电器、定时器,采用了串联电路块的并联与多重输出电路等方法,完成了模块化的程序设计。每一模块独立完成一项具体任务。整个程序流程图如图2所示。程序的PLC梯形图如图3所示。
图2 滑差调节器控制系统的程序流程图
图3 滑差调节器程序梯形图
3.2 滑差调节器的PLC控制方式
该PLC控制系统为了满足调试和实验两方面的要求,设计了就地控制和远程控制两套方案。当调试时,采用就地控制方案。当进行聚变反应实验时,采用远程控制方案。
按照电机机组起动的技术要求,当1#机组起动或再加速完毕,2#机组才能进行起动或再加速过程。而对于1#、2#机组的提电极过程需要同时进行。该PLC控制系统的程序设计完全满足了上述技术要求。
该PLC控制系统还实现了滑差调节器部分的相对独立以及与装置其他部分的协调合作。当进行滑差调节器内部自检工作时,通过PLC程序断开滑差调节器部分与外界的通信,避免了与外部设备间的相互干扰。当进行聚变反应实验时,又通过PLC程序接通滑差调节器部分与外界的通信。此时,对于中心控制室的输入信号,通过PLC编程控制相应按钮及指示灯的互锁来确保提电极和再加速信号的准确、无误;对于输出信号,通过独立的继电器触点给出信号,避免了外部设备的干扰。以上所述都是通过PLC编程配上转换开关来切换和实现的。
3.3 滑差调节器的事故保护
当2500kW电动机的转子回路的电流过大时,循环碱液温度过高,以至冷却循环水无法带走转子回路释放的多余热量,此时通过温度传感器、PLC以及电铃,发出报警;当碱液温度达到70℃时,该控制系统的热继电器动作,整个机组停止起动。
当电极提升电机或碱液循环泵过热时,相应的热继电器动作,整个机组也将停止起动。
3.4 实际问题的解决
由于滑差调节器的控制在初设计时,只考虑了当真空开关合闸,手动按动控制活动电极下降的按钮一次后,电极自动下降一种方案,当调试时,这一方案突然失灵。为了能够对付这种突发事件,以及更进一步地实现自动控制,该控制系统补充了两种方案与已有方案并存。种方案实现了当真空开关合闸,滑差调节器控制系统自动进入活动电极下降程序。第二种方案考虑了意外情况,对电机的下降完全采用手动下降操作。
真空开关合闸瞬间,机组的一次回路中的电流从0开始上升,这时如果使电流变送器动作,PID模块接收到的电流信号将从0开始上升,这样经过PID算法,测量值远小于给定值,使得滑差调节器的活动电极急速下降,这是一种严重的误动作。为了躲过一次回路中电流上升这一暂态过程,滑差调节器控制系统利用了PLC的定时器延时5秒使电流变送器动作。
4 总结
我们所设计的基于PLC的滑差调节器的控制系统经历了HL-2A装置运行实验的检验,实验记录表明在机组的整个起动和再加速过程中,绕线式异步电动机定子电流的稳定度达到1%以下,满足了实验的要求。根据实验数据所绘出的2500kW电动机定子电流与时间关系图如图5。从图中可见,发电机组在刚
起动期间,起动电流以低于设定电流值(230A)
图5 发电机组电动机定子电流与时间关系图
开始上升并超过设定值,然后才缓慢降到设定值。对上述现象的解释如下:起动开始时绕线式异步电动机的绕组阻碍了起动电流的增大,因此机组起动的初一段时间,起动电流经历了上升的暂态过程。为躲过这一暂态过程,前边所述的PLC定时器延时5秒所选时间太长,致使起动电流超过了设定值,然后才在PID反馈控制的作用下缓慢下降到设定值。因此,我们需要进一步的调试或计算来得到PLC定时器的准确延时值。
5 结束语
HL-2A装置的滑差调节控制系统是在经费不充裕的条件下完成的,因此,没有考虑它的计算机实时显示以及触摸屏方式。希望在条件合适的时候,我们设计的该控制系统能够在这两方面得到改进。