6GK7243-1EX01-0XE0一级代理
6GK7243-1EX01-0XE0一级代理
一、三菱变频器通信数据格式
使用十六进制数,数据在PLC和变频器之间自动使用ASCⅡ传输
写入:PLC(主站)向变频器(从站)写入数据;
读出:PLC 从变频器读出数据。
1)从PLC到变频器的通信请求数据
数据写入:
写入的数据位数为2位时的格式,如数据:23H(数据的位数由指令代码决定)
ENQ(1)+变频器站号(2,3)+指令代码(4,5)+等待时间(6)+数 据(7,8)+总和校验(9,10)+CR或者LF(11)
写入的数据位数为4位时的格式,如数据:2356H
ENQ(1)+变频器站号(2,3)+指令代码(4,5)+等待时间(6)+数 据(7,8,9,10)+总和校验(11,12)+CR或者LF(13)
写入的数据位数为6位时的格式,如数据:2378ABH
ENQ(1)+变频器站号(2,3)+指令代码(4,5)+等待时间(6)+数 据(7,8,9,10,11,12)+总和校验(13,14)+CR或者LF(15)
数据读出时的通信格式:
ENQ(1)+变频器站号(2,3)+指令代码(4,5)+等待时间(6)+总和校验(7,8)+CR或者LF(9)
2)写入数据时从变频器向PLC的送信数据
没有发现数据错误的格式
ACK(1)+变频器站号(2,3)+CR或者LF(4)
发现数据错误的格式
NAK(1)+变频器站号(2,3)+数据错误代码(4)+CR或者LF(5)
3)读出数据时从变频器到PLC的应答数据
读出的数据为2位时的格式
STX(1)+变频器号(2,3)+读出数据(4,5)+ETX(6)+总和校验(7,8)+CR或者LF(9)
读出的数据为4位时的格式
STX(1)+变频器号(2,3)+读 出 数 据(4,5,6,7)+ETX(8)+总和校验(9,10)+CR或者LF(11)
读出的数据为6位时的格式
STX(1)+变频器号(2,3)+读出数据(4,5,6,7,8,9)+ETX(10)+总和校验(11,12)+CR或者LF(13)
4)读出数据时的从PLC到变频器送信数据
没有发现数据错误的格式
ACK(1)+变频器站号(2,3)+CR或者LF(4)
发现数据错误的格式
NAK(1)+变频器站号(2,3)+数据错误代码(4)+CR或者LF(5)
以上各表后一列可以省去在变频器P124=0即可(本实验也省掉了)
(2)数据定义
控制代码
信号(STX)+ASCⅡ码(H02)+ 说明(数据开始);
信号(ETX)+ASCⅡ码(H03)+ 说明(数据结束);
信号(ENQ)+ASCⅡ码(H05)+ 说明(通讯请求);
信号(ACK)+ASCⅡ码(H06)+ 说明(没有发现数据错误);
信号(LF)+ASCⅡ码(H0A)+ 说明(回车);
信号(CR)+ASCⅡ码(H0D)+ 说明(换行);
信号(NAK)+ASCⅡ码(H15)+ 说明(发现数据错误);
二、科威PLC自由协议的相关函数
1、发送函数
函数功能号:D8200=K29
调用方法:: SET M8200
入口参数: 通信格式(D8120); 待发送字节数(D8121); 发送区的起始单元(D8128); 发送/接收超时时间设定(D8127,可选);
状态参数: 发送请求标志(M8121); 发送成功标志(M8122); 发送剩余字节数(D8122),超时剩余时间(D8130); 奇偶校验错标志(M8120),发送/接收超时标志(M8127);
函数调用过程:设置入口参数→赋函数功能号→调用函数→查看标志 → 决定下程。
2、接收函数
函数功能号: D8200=K30
通信格式: D8120_Bit10=1”发送结束自动转接收”则接收函数的函数功能号和通信格式就可以省略,参照《科威PLC编程手册》P196所述的自动隐式调用接收函数。
调用方法::SET M8200
入口参数:通信格式(D8120) 待接收的字节数(D8123) 接收区的起始单元(D8129) 设定接收的起始字符(D8125) 设定接收的终止字符(D8126) 发送/接收超时时间设定(D8127,可选)
状态参数:接收请求标志(M8123) 接收到起始字节的标志(M8124) 接收到起始符的标志(M8125), 接收到终止符的标志(M8126), 已接收的字节数(D8124),超时剩余时间(D8130) 奇偶校验错标志(M8120),发送/接收超时标志(M8127)
函数调用过程:设置入参数→赋函数功能号 → 调用函数→ 查看标志 → 决定下程
3、辅助函数
所有的辅助函数调用的方式大体上是相似的
1) ASCⅡ码转换为HEX函数
函数功能号: D8200=K25
调用方法: SET M8200
入口参数指针: D8201
有效字节数: D8202 , 即数据个数
起始字节: M8201;
起始高字节:RST M8201;
起始低字节:SET M8201
字/字节有效: M8202;
字有效: RST M8202;
字有效: SET M8202;
出口参数指针: D8203;
起始字节: M8203; 起始高字节:RST M8203; 起始低字节:SET M8203;
字/字节有效: M8204;
字有效: RST M82024;
字有效: SET M8204;
函数调用过程:设置出入口参数→赋函数功能号→ 调用函数;
2) HEX转换为ASCⅡ码函数
函数功能号::D8200=K26
调用方法: SET M8200
入口参数指针: D8201
有效字节数: D8202 , 即数据个数
起始字节: M8201;
起始高字节:RST M8201;
起始低字节:SET M8201;
字/字节有效: M8202; 字有效: RST M8202; 字有效: SET M8202 ;
出口参数指针: D8203;
起始字节: M8203;
起始高字节:RST M8203;
起始低字节:SET M8203;
字/字节有效: M8204 ;
字有效: RST M82024;
字有效: SET M8204;
函数调用过程:设置出入口参数→赋函数功能号 → 调用函数;
三、PLC与变频器的连线
变频器端的接口是RJ45;(见附件1)
PLC端的接口是端子接线:RS485-A,RS485-B
把变频器的RDA和SDA连起来接到科威PLC的RS485-A ;
把变频器的RDB和SDB连起来接到科威PLC的RS485-B(用网线制作通讯电缆);
四、程序结构
1、程序框图
五、资源占用情况说明
1)主程序
地址(D0)+存放内容(读/写标志:D0=0读;D0=1写);
地址(D1)+存放内容(所读/写的数据位数);
地址(D2)+存放内容(读/写命令代码);
地址(D3)+存放内容(所写的数据);
地址(D4)+存放内容(所写的数据);
地址(D5)+存放内容(从站号);
地址(D6)+存放内容(等待时间);
数据寄存器(D0-D6)+状态元件S(S0-S4)+位元件M(M0-M43)+标签P(P0-P4);
数据寄存器(D20)+位元件M(M51-M54)+标签P(P13-P16);
数据寄存器(D7200)+位元件M(M1012-M1039);
2)发送和接收函数
位元件M(M98-M100)+定时计(T200)
3)P0子程序
数据寄存器(D11-D18)+位元件M(M0-M43);
数据寄存器(D6000-D6010)+位元件M (M1000-M1007);
数据寄存器(D7000-D7021,D7030-D7033)+位元件M(M1012-M1039);
4)P1子程序
数据寄存器(D11-D12)+位元件M(M1000-M1007);
数据寄存器(D6011-D6012) ;
数据寄存器(D7030-D7033);
5)P2子程序
数据寄存器(D20-D24)+位元件M(M98-M99);
数据寄存器(D7000-D7001);
6)P3子程序
数据寄存器(D7D-10,D21-D24)+位元件M(M1100-M1155)+定时器(T0);
数据寄存器(D7000-D7003) +位元件M(M1200-M1215);
数据寄存器(D7101-D7105);
7)P4子程序
数据寄存器
D7-D10
D7101-D7105
8)P13子程序
P13子程序说明HFF=1的功能代码
数据寄存器
D1-D4
D20,D30,
9)P14子程序
P14子程序说明H7F=1的功能代码
数据寄存器
D1-D4
D20,D30,
10)P15子程序
P15子程序说明HFF=0的功能代码
数据寄存器
D1-D4
D20,D30,
11)P16子程序
P16子程序说明H7F=0的功能代码
数据寄存器
D1-D4
D20,D30,
附件1:接线图
附件2:在实现相应的读写参数之前先保证通信参数扩展“H7F或者HFF”的值是它们所在列的“H7F或者HFF”的值,但是因为每列“HFF或者H7F”的有且只需要填写一次(填写一次后变频器自动记忆,除非复位,出厂时“HFF=0或者H7F=0”)即可去完成“HFF或者H7F”所在列的其他功能,方法是:填写D30=0,并按下相应的M即可
附表2使用说明:首先根据需要选定相应的参数,再根据参数找相应纵横的首行M,首列D30的值,需要先把相应的把M强制为ON再给D30赋予相应功能号的值,即可实现要读的参数;若要写再通过D3赋予所需要的数值即可实现写的功能。
下面用下面两个例子,分别说明读写方法:
读写前变频器参数设定:根据程序通信格式要求:D8120=H0436(含义:表示“0”表示自由协议,
“4”表示发送结束自动转接收, “3”表示波特率为9600bps,“6”为7位数据1停止位且无奇偶校验.故变频器参数设定如下: PLC和1#变频器通信时,所以P117=1;P118=96;
P119=10;P120=2;P121=9999;P122=9999;P123=9999;P124=0
例一:要读取“输出电压值”(功能号为D30=K3,M51=ON和M100=ON),则先令M100=ON,再令M51=ON,后填写D30=K2就可以在D10看到相应的电压值。
总结读取相关参数步骤(方法):
例二:要写入“启动频率”(功能号D30=K14,M53=ON,M100=ON),则先令M100=ON,其次令M53=ON,再次填写D30=K14,后通过D3填写相应的“启动频率值”[如“启动频率值”=0.5HZ,小单位0.01HZ, “启动频率值”=D3*小单位,所以D3=K50。小
单位参见三菱变频器FR-E500系列说明书P54〜P60参数表(出厂参数表4.1.1)}
<img src="https://www.jdzj.com/plc/plcedit/UploadFile/2009211103317222.jpg" 后记:1、由于仓促错漏等不足之处在所难免,望各位同行朋友多多指教!
2、提供有附件2表中所有功能的程序,同时还提供了程序简化仅访问下表四个重要参数的程序,希望对各位同行朋友参考,学习有所帮助。
D30的值(功能号10进制) 扩展码HFF=1 读:输出频率 读:输出电流 读:输出电压 读:近两次报警(高字节前一次报警,低字节后一次报警)
一、PLC的产生
1.继-接控制回顾
由学生回答继电器(接触器)的结构、原理、画出三相异步电机启-停的主电路图、控制电路图
由学生归纳出继-接控制的不足,从而引出“PLC的产生”
2.PLC的产生
68年美国通用汽车公司(GM)招标要求:
(1)软连接代替硬接线(2)维护方便(3)可靠性高于继电器控制柜(4)体积小于继电器控制柜(5)成本低于继电器控制柜(6)有数据通讯功能(7)输入115V(8)可在恶劣环境下工作(9)扩展时,原系统变更要少(10)用户程序存储容量可扩展到4K
核心思想:
·用程序代替硬接线
·输入/输出电平可与外部装置直接相联
·结构易于扩展
这是PLC的雏形。
69年美国DEC公司研制出世界上台PLC(PDP-14),并在GM公司汽车生产线上应用成功
PLC的诞生:
·1969年,美国研制出一台PDP-14
·1971年,日本研制出台DCS-8
·1973年,德国研制出台PLC
·1974年,中国研制出台PLC
二、PLC的特点、现状与发展
(一)特点
(1)体积小(2)可靠性高(3)柔性好,可在线更改程序(4)对环境条件无要求(5)价格低廉……具备招标要求的所有功能
(二)现状
80%以上的行业,80%以上的设备均可使用PLC
(三)发展
发展史:
代:1969年~1972年,代表产品有
·美国DEC公司的PDP-14/L
·日本立石电机公司的SCY-022
·日本北辰电机公司的HOSC-20
第二代:1973年~1975年,代表产品有
·美国GE公司的LOGISTROT
·德国SIEMENS公司的SIMATICS3、S4系列
·日本富士电机公司的SC系列
第三代:1976~1983年,代表产品有
·美国GOULD公司的M84、484、584、684、884
·德国SIEMENS公司的SIMATICS5系列
·日本三菱公司的MELPLAC-50、550
第四代:1983年~现在,代表产品有
·美国GOULD公司的A5900
·德国西门子公司的S7系列
发展方向:
·产品规模向两极分化
·处理模拟量
·追求高可靠性
·通讯接口和智能模块
·系统操作站配高分辨率的监视器
·追求软、硬件标准化
三、PLC的分类
·按结构分:
·整体型
·组合型
·按I/O点数及内存容量分:
·超小型:小于64点,256Byet~1KB
·小型:65~128点,1~3。6KB
·中型:129~512点,3。6~13KB
·大型:513~896点,大于13KB
·超大型:大于896点,大于13KB
四、网络型PLC与DCS的关系
DCS起源于模拟量
PLC起源于开关量
二者相互渗透、取长补短,功能上日趋接近,使数字世界、模拟世界更加模糊
决定DCS与PLC应用面大小的是其性能/价格比