全国服务热线 15221406036

西门子模块6ES7231-7PC22-0XA0诚信交易

更新时间:2024-05-08 07:10:00
价格:请来电询价
联系电话:
联系手机: 15221406036
联系人:聂航
让卖家联系我
详细介绍

西门子模块6ES7231-7PC22-0XA0诚信交易

  关键词:PLC 变频器 中央空调 节能改造

一、前言

  中央空调系统是现代大型建筑物不可缺少的配套设施之一,电能的消耗非常大,约占建筑物总电能消耗的50%。由于中央空调系统都是按大负载并增加一定余量设计,而实际上在一年中,满负载下运行多只有十多天,甚至十多个小时,几乎绝大部分时间负载都在70%以下运行。通常中央空调系统中冷冻主机的负荷能随季节气温变化自动调节负载,而与冷冻主机相匹配的冷冻泵、冷却泵却不能自动调节负载,几乎长期在负载下运行,造成了能量的极大浪费,也恶化了中央空调的运行环境和运行质量。

  随着变频技术的日益成熟,利用变频器、PLC、数模转换模块、温度传感器、温度模块等器件的有机结合,构成温差闭环自动控制系统,自动调节水泵的输出流量,达到节能目的提供了可靠的技术条件。

二、问题的提出

  1、原系统简介

  我酒店的中央空调系统的主要设备和控制方式:100冷吨冷气主机2台,型号为三洋溴化锂蒸汽机组,平时一备一用,高峰时两台并联运行;冷却水泵2台,扬程28米,配用功率45 KW,冷水泵有3台,由于经过几次调整,型号较乱,一台为扬程32米,配用功率37KW, 一台为扬程32米,配用功率55KW, 一台为扬程50米,配用功率45KW。冷却塔6台,风扇电机5.5KW,并联运行。

  2、原系统的运行及存在问题

  我酒店是一间三星级酒店。因酒店是一个比较特殊的场所,对客人的舒适度要求比较高,且酒店大部分空间自然通风效果不好,所以对夏季冷气质量的要求较高。

  由于中央空调系统设计时必须按天气热、负荷大时设计,且留有10%-20%左右的设计余量。其中冷冻主机可以根据负载变化随之加载或减载,冷冻水泵和冷却水泵却不能随负载变化作出相应的调节。这样,冷冻水、冷却水系统几乎长期在大流量、小温差的状态下运行,造成了能量的极大浪费。

  为了解决以上问题,我们打算利用变频器、PLC、数模转换模块、温度模块、温度传感器等构成的温差闭环自动调速系统。对冷冻、冷却水泵、冷却塔进行改造,以节约电能。

三、节能改造的可行性分析

   改造方案是通过变频器、PLC、数模转换模块、温度模块和温度传感器等构成温差闭环自动控制,根据负载轻重自动调整水泵的运行频率,同时根据冷却水温度的高低,自动切投冷却塔散热风机,以达到节能效果。以下是分析过程:

  1、  中央空调系统简介



中央空调系统结构图

  在中央空调系统设计中,冷冻泵、冷却泵的装机容量是取系统大负荷再增加10%—20%余量作为设计系数。根据计算中央空调系统中,冷冻水、冷却水循环用电约占夏季酒店总用电的25%—30%,冷却塔的用电占8%—10%。因此,实施对冷冻水和冷却水循环系统以及冷却塔的能量自动控制是中央空调系统节能改造及自动控制的重要组成部分。

  2、泵的转速调节

  根据异步电动机原理

         n=60f/p(1-s)            

式中:n:转速     f:频率    p:电机磁极对数      s:转差率

由上式可见,调节转速有3种方法,改变频率、改变电机磁极对数、改变转差率。在以上调速方法中,变频调速性能好,调速范围大,静态稳定性好,运行效率高。因此改变频率而改变转速的方法方便有效。

  3、冷却塔的控制

    以前的冷却塔是人为的根据冷却水温度选择冷却塔开启的台数,非常容易造成能源的浪费现象,现在根据冷却水的温度,由温度传感器传送信号至PLC,由PLC经计算后对冷却塔风机依次开启,以28℃为基数,温度每上升2℃,开启两台散热风机,每下降2℃,延时5分钟后停止2台风机,以达到节能效果。

四、节能改造的具体方案

  1、主电路的控制设计

  根据具体情况,同时考虑到成本控制,原有的电器设备尽可能的利用。冷冻水泵及冷却水泵均采用一用一备的方式运行,使用一台变频器控制拖动两台水泵交替运行。将一台扬程较高的冷水泵作为备用。

以下为冷冻水泵与冷却水泵一次接线图:

  2、功能控制方式

工作流程:

  开机:开启冷水及冷却水泵,由PLC控制冷水及冷却水泵的启停,由冷水及冷却水泵的接触器向制冷机发出联锁信号,开启制冷机,由变频器、温度传感器、温度模块组成的温差闭环控制电路对水泵进行调速以控制工作流量,同时PLC控制冷却塔根据温度传感器信号自动选择开启台数。

  停机:关闭制冷机,冷水及冷却水泵以及冷却塔延时十分钟后自动关闭。

  保护:由压力传感器控制冷水及冷却水的缺水保护,压力偏低时自动开启补水泵补水。

五、变频节能技术框图及改造原理分析

下图为变频节能系统示意图

 1、对冷冻泵进行变频改造


  控制原理说明如下:PLC控制器通过温度模块及温度传感器将冷冻机的回水温度和出水温度读入控制器内存,并计算出温差值;然后根据冷冻机的回水与出水的温差值来控制变频器的频率,以控制电机转速,调节出水的流量,控制热交换的速度;温差大,说明室内温度高系统负荷大,应提高冷冻泵的转速,加快冷冻水的循环速度和流量,加快热交换的速度;反之温差小,则说明室内温度低,系统负荷小,可降低冷冻泵的转速,减缓冷冻水的循环速度和流量,减缓热交换的速度以节约电能;

  2、对冷却泵进行变频改造

  由于冷冻机组运行时,其冷凝器的热交换量是由冷却水带到冷却塔散热降温,再由冷却泵送到冷凝器进行不断循环的。冷却水进水出水温差大,说明冷冻机负荷大,需冷却水带走的热量大,应提高冷却泵的转速,加大冷却水的循环量;温差小,则说明,冷冻机负荷小,需带走的热量小,可降低冷却泵的转速,减小冷却水的循环量,以节约电能。

六、实际调试注意事项

  1、整改设备安装完毕后,先将编好的程序写入PLC,设定变频器参数,检查电器部分并逐级通电调试。

  2、投入试运行时,人为地减少负荷,观察流量是否因频率的降低而减小,并找到制冷机报警时的低变频器频率,以及流量降低后管道末端的循环情况,使变频器工作在一个低的稳定工作点。

  3、用温度计及时检测各点温度,以便检验温度传感器的jingque度及校验各工况状态。

七、技术改造后的运行效果比较

  1、节能效果及投资回报

  进行技术改造后,系统的实际节电率与负荷状态、天气温度变化等因素有一定关系。根据以往运行参数的统计与改造后的节能预测,平均节能应在20-30%以上。经济效益十分显著。改造后投入运行一年即可收回成本,以后每年可为酒店节约用电约12万元。

  2、对系统的正面影响

  由于冷冻泵、冷却泵采用了变频器软启停,消除了原来启动时大电流对电网的冲击,用电环境得到了改善;消除了启停水泵产生的水锤现象对管道、阀门、压力表等的损害;消除了原来直接启停水泵造成的机械冲击,电机及水泵的轴承、轴封等机械磨擦大大减少,机械部件的使用寿命得到延长 ;由于水泵大多数时间运行在额定转速以下,电机的噪声、温升及震动都大大减少,电气故障也比原来降低,电机使用寿命也相应延长。

    由于采用了温差闭环变频调速,提高了冷冻机组的工作效率,提高了自动化水平。减少了人为因数的影响,大大优化了系统的运行环境、运行质量。

八、结论

  虽然一次性投资较大,但从长远的经济利益来看是值得的。这里我们也借鉴了其它一些酒店改造的经验和实际效果,进一步验正了利用变频器、PLC、数模转换模块、温度模块、温度传感器等组成的温差闭环自动控制系统,对中央空调系统的节能改造是可行的。可以达到我们当初设计的预期效果。

九、结束语

  在科技日新月异的,积极推广高新技术的应用,使其转化为生产力,是我们工程技术人员应尽的社会责任。对落后的设备生产工艺进行技术革新,不仅可以提高生产质量、生产效率,创造可观的经济效益。对节能、环保等社会效益同样有着重要的意义。

 引言

    可编程控制器(PLC)是一种数字运算与操作的控制装置。PLC作为传统继电器的替代产品,广泛应用于工业控制的各个领域。由于PLC可以用软件来改变控制过程,并有体积小,组装灵活,编程简单,抗干扰能力强及可靠性高等特点,特别适用于恶劣环境下运行。

    当利用变频器构成自动控制系统进行控制时,很多情况下是采用PLC和变频器相配合使用,例如我厂二催化的自动吹灰系统。PLC可提供控制信号和指令的通断信号。一个PLC系统由三部分组成,即中央处理单元、输入输出模块和编程单元。本文介绍变频器和PLC进行配合时所需注意的事项。

    1.开关指令信号的输入

    变频器的输入信号中包括对运行/停止、正转/反转、微动等运行状态进行操作的开关型指令信号。变频器通常利用继电器接点或具有继电器接点开关特性的元器件(如晶体管)与PLC)相连,得到运行状态指令,如图1所示。在使用继电器接点时,常常因为接触不良而带来误动作;使用晶体管进行连接时,则需考虑晶体管本身的电压、电流容量等因素,保证系统的可靠性。

    在设计变频器的输入信号电路时还应该注意,当输入信号电路连接不当时有时也会造成变频器的误动作。例如,当输入信号电路采用继电器等感性负载时,继电器开闭产生的浪涌电流带来的噪音有可能引起变频器的误动作,应尽量避免。图2与图3给出了正确与错误的接线例子。

    当输入开关信号进入变频器时,有时会发生外部电源和变频器控制电源(DC24V)之间的串扰。正确的连接是利用PLC电源,将外部晶体管的集电极经过二极管接到PLC。如图4所示。

    2.数值信号的输入

060516PLC1

  图1运行信号的连接方式

060516PLC2

图2变频器输入信号接入方式

060516PLC3

   图3输入信号的错误接法

060516PLC4

  输入信号防干扰的接法

    变频器中也存在一些数值型(如频率、电压等)指令信号的输入,可分为数字输入和模拟输入两种。数字输入多采用变频器面板上的键盘操作和串行接口来给定;模拟输入则通过接线端子由外部给定,通常通过0~10V/5V的电压信号或0/4~20mA的电流信号输入。由于接口电路因输入信号而异,因此必须根据变频器的输入阻抗选择PLC的输出模块。图5为PLC与变频器之间的信号连接图。  当变频器和PLC的电压信号范围不同时,如变频器的输入信号为0~10V,而PLC的输出电压信号范围为0~5V时;或PLC的一侧的输出信号电压范围为0~10V而变频器的输入电压信号范围为0~5V时,由于变频器和晶体管的允许电压、电流等因素的限制,需用串联的方式接入限流电阻及分压方式,以保证进行开闭时不超过PLC和变频器相应的容量。此外,在连线时还应注意将布线分开,保证主电路一侧的噪音不传到控制电路。

    通常变频器也通过接线端子向外部输出相应的监测模拟信号。电信号的范围通常为0~10V/5V及0/4~20mA电流信号。无论哪种情况,都应注意:PLC一侧的输入阻抗的大小要保证电路中电压和电流不超过电路的允许值,以保证系统的可靠性和减少误差。另外,由于这些监测系统的组成互不相同,有不清楚的地方应向厂家咨询。

    另外,在使用PLC进行顺序控制时,由于CPU进行数据处理需要时间,存在一定的时间延迟,故在较jingque的控制时应予以考虑。

    因为变频器在运行中会产生较强的电磁干扰,为保证PLC不因为变频器主电路断路器及开关器件等产生的噪音而出现故障,将变频器与PLC相连接时应该注意以下几点:

    (1)对PLC本身应按规定的接线标准和接地条件进行接地,而且应注意避免和变频器使用共同的接地线,且在接地时使二者尽可能分开。

    (2)当电源条件不太好时,应在PLC的电源模块及输入/输出模块的电源线上接入噪音滤波器和降低噪音用的变压器等,另外,若有必要,在变频器一侧也应采取相应的措施。

    (3)当把变频器和PLC安装于同一操作柜中时,应尽可能使与变频器有关的电线和与PLC有关的电线分开。

    (4)通过使用屏蔽线和双绞线达到提高噪音干扰的水平。

    3结束语

    PLC和变频器连接应用时,由于二者涉及到用弱电控制强电,因此,应该注意连接时出现的干扰,避免由于干扰造成变频器的误动作,或者由于连接不当导致PLC或变频器的损坏。

060516PLC2

060516PLC2

本文以三菱PLC为例介绍了模拟量控制,并结合变频调速基本原理及特点,重点阐述了如何通过PLC模拟量控制来实现对变频器的速度调节。 

    1、引言

    近年来可编程序控制器(PLC)以及变频调速技术日益发展,性能价格比日益提高,并在机械、冶金、制造、化工、纺织等领域得以普及和应用。为满足温度、速度、流量等工艺变量的控制要求,常常要对这些模拟量进行控制,PLC模拟量控制模块的使用也日益广泛。

    通常情况下,变频器的速度调节可采用键盘调节或电位器调节方式,但是,在速度要求根据工艺而变化时,仅利用上述两种方式则不能满足生产控制要求,因此,我们须利用PLC灵活编程及控制的功能,实现速度因工艺而变化,从而保证产品的合格率。

    2、变频器简介

    交流电动机的转速n公式为:

060620PLC1    

    式中:f—频率;

    p—极对数;

    s—转差率(0~3%或0~6%)。

    由转速公式可见,改变三相异步电动机电源频率,可以改变旋转磁通势的同步转速,达到调速的目的。额定频率称为基频,变频调速时,可以从基频向上调(恒功率调速),也可以从基频向下调(恒转距调速)。因此变频调速方式,比改变极对数p和转差率s两个参数简单得多。同时还具有很好的性价比、操作方便、机械特性较硬、静差率小、转速稳定性好、调速范围广等优点,因此变频调速方式拥有广阔的发展前景。

    3、PLC模拟量控制在变频调速的应用

    PLC包括许多的特殊功能模块,而模拟量模块则是其中的一种。它包括数模转换模块和模数转换模块。例如数模转换模块可将一定的数字量转换成对应的模拟量(电压或电流)输出,这种转换具有较高的精度。

    在设计一个控制系统或对一个已有的设备进行改造时,常常会需要对电机的速度进行控制,利用PLC的模拟量控制模块的输出来对变频器实现速度控制则是一个经济而又简便的方法。

    下面以三菱FX2N系列PLC为例进行说明。同时选择FX2N-2DA模拟量模块作为对变频器进行速度控制的控制信号输出。如图1所示,控制系统采用具有两路模拟量输出的模块对两个变频器进行速度控制。

060620PLC2

    图2为变频器的控制及动力部分,这里的变频器采用三菱S540型,PLC的模拟量速度控制信号由变频器的端子2、5输入。

    060620PLC3

    3.1系统中PLC模拟量控制变频调速需要解决的主要问题

    (1)模拟量模块输出信号的选择

    通过对模拟量模块连接端子的选择,可以得到两种信号,0~10V或0~5V电压信号以及4~20mA电流信号。这里我们选择0~5V的电压信号进行控制。

    (2)模拟量模块的增益及偏置调节

    模块的增益可设定为任意值。然而,如果要得到大12位的分辨率可使用0~4000。如图3,我们采用0~4000的数字量对应0~5V的电压输出。当然,我们可对模块进行偏置调节,例如数字量0~4000对应4~20mA时。

060620PLC4

    (3)模拟量模块与PLC的通讯

    对于与FX2N系列PLC的连接编程主要包括不同通道数模转换的执行控制,数字控制量写入FX2N-2DA等等。而重要的则是对缓冲存储器(BFM)的设置。通过对该模块的认识,BFM的定义如附表。

    附表BFM的定义

060620PLC5    

    从附表中可以看出起作用的仅仅是BFM的#16、#17,而在程序中所需要做的则是根据实际需要给予BFM中的#16和#17赋予合适的值。其中:

    #16为输出数据当前值。

    #17:b0:1改变成0时,通道2的D/A转换开始。

    b1:1改变成0时,通道1的D/A转换开始(4)控制系统编程

    对于上例控制系统的编写程序如图4所示。

060620PLC6

    在程序中:

    1)当M67、M68常闭触点以及Y002常开触点闭合时,通道1数字到模拟的转换开始执行;当M62、M557常闭触点以及Y003常开触点闭合时,通道2数字到模拟的转换开始执行。

    2)通道1

    将保存个数字速度信号的D998赋予辅助继电器(M400~M415);

    将数字速度信号的低8位(M400~M407)赋予BFM的16#;

    使BFM#17的b2=1;

    使BFM#17的b2由1→0,保持低8位数据;

    将数字速度信号的高4位赋予BFM的16#;

    使BFM#17的b1=1;

    使BFM#17的b1由1→0,执行通道1的速度信号D/A转换。

    3)通道2

    将保存第二个数字速度信号的D988赋予辅助继电器(M300~M315);

    将数字速度信号的低8位(M300~M307)赋予BFM的16#;

    使BFM#17的b2=1;

    使BFM#17的b2由1→0,保持低8位数据;

    将数字速度信号的高4位赋予BFM的16#;

    使BFM#17的b0=1;

    使BFM#17的b0由1→0,执行通道2的速度信号D/A转换。

    4)程序中的K0为该数模转换模块的位置地址,在本控制系统中只用了一块模块,因此为K0,假如由于工艺要求控制系统还要再增加一块模块,则新增模块在编程时只要将K0改为K1即可。

    (5)变频器主要参数的设置

    根据控制要求,设置变频器的运行模式为外部运行模式,运行频率为外部运行频率设定方式,Pr.79=2;模拟频率输入电压信号为0~5V,所以,Pr.73=0;其余参数根据电机功率、额定电压、负载等情况进行设定。

    3.2注意事项

    (1)FX2N-2DA采用电压输出时,应将IOUT与COM短路;

    (2)速度控制信号应选用屏蔽线,配线安装时应与动力线分开。

    4、结束语

    上述控制在实际使用过程中运行良好,很好的将PLC易于编程与变频器结合起来,当然不同的可编程序控制器的编程和硬件配置方法也不同,比如罗克韦尔PLC在增加D/A模块时,只要在编程环境下的硬件配置中添加该模块即可。充分利用PLC模拟量输出功能可以控制变频器从而控制设备的速度,满足生产的需要。


没有

联系方式

  • 地址:上海松江 上海市松江区石湖荡镇塔汇路755弄29号1幢一层A区213室
  • 邮编:201600
  • 联系电话:未提供
  • 经理:聂航
  • 手机:15221406036
  • 微信:15221406036
  • QQ:3064686604
  • Email:3064686604@qq.com