全国服务热线 15221406036

西门子模块6ES7222-1EF22-0XA0诚信交易

更新时间:2024-05-08 07:10:00
价格:请来电询价
联系电话:
联系手机: 15221406036
联系人:聂航
让卖家联系我
详细介绍

西门子模块6ES7222-1EF22-0XA0诚信交易

1 引言
  电源监控是铁路信号的重要的监控系统。在此之前信号的电源监控系统基本上是采用单片机作为信号采集系统的核心。单片机监控系统一方面存在采集速度慢、界面不友好、操作不方便等技术局限,另一方面由于其中的电源模块部分的监控相对独立,对电源系统带来了诸多不便,比如维护困难、界面显示繁琐等。基于以上原因本项目配套开发了基于台达PLC作为信号采集核心、台达HMI触摸屏作为操作和监视界面的电源监控系统。监控子系统与电源模块通过工业总线网络互连实现整合的经济实用、技术先进的铁路信号的电源监控系统。
2 硬软件系统设计
2.1硬件体系设计

图1 硬件体系设计

  铁路信号电源监控硬件体系设计参见图1。系统规模:44个数字量输入;1个数字量输出;6个电源模块;39路模拟量输入。
  控制系统配置如下:触摸屏:DOPA75CSTD;PLC:DVP16EH00T+1个DVP04AD-H+3个DVP16HM11N;电源模块通讯卡1块;分时采集电路卡1块。
  触摸屏主要是用来显示采集数据、报警、报警上下限设定、采集数据显示微调、报警数据显示、历史趋势图显示等。PLC主要是采集数据并计算,由于考虑系统对模拟量采集的速度要求不是很高,为了节省成本,系统中使用了1 个DVP04AD-H对39路模拟量进行了分时采集,为了实现这个功能我们与厂家共同实验开发了一个电子开关电路,对39路模拟量分了十组、每组4路,通过输出不同的组别进行采集。电源通讯卡主要负责把6块电源模块的数据汇总并且通过RS484接口以MODBUS协议与PLC通讯,使PLC采集得到6块电源模块的数据,为实现这个功能我们公司的电源研发部门做了大量的工作,终使PLC与电源模块的通讯卡实现了通讯,电源模块的信息得到了采集。

2.2软件体系设计
  (1)系统功能设计:44个数字量采集显示,故障判断;6个电源模块的数据采集显示、显示电源模块的工作状态并判断报警;39路模拟量显示、并判断上下限报警;显示报警画面、报警信息、当前报警、报警频次;报警上下限设定;数据微调功能,并且显示微调值;
历史趋势图显示;不同画面开启权限设定;
  以上有必要说明的是数据微调功能,由于现场的一次测量元件测量会有误差,而且此误差是固定的,短时间内是不变的,所以在程序当中增加这部分功能,使终显示出来的数值是消除误差之后的值;
  (2)系统结构设计分为HMI人机对话界面部分和PLC现场监控部分。HMI部分主要构架参见图2。

图2 HMI人机对话界面

  PLC监控部分主要包括:电源模块通讯;分时采集40路模拟量,每次采集4路;对采集的模拟量根据量程进行计算得出显示值,显示电源模块的工作状态并判断报警;微调值计算,显示值微调,并做负值消除;故障和报警;数字量采集显示,故障判断;

3 工程调试
  调试分时采集功能时需要注意分时采集的时间,过大会影响整体数据采集的时间,过小会造成采集数据混乱,另外需要在两次采集数据之间加一段间隔时间,避免两组数据的重叠。对采集的模拟量根据量程进行计算得出显示值。微调值计算,显示值微调,并做负值消除;注意微调时可能会出现负值情况,所以要考虑负值的消除。电源模块通讯注意电源通讯时的通讯协议一定要在通讯卡中设置好,包括站号设定,另外注意地址对应。故障和报警;因为报警点共有79个,很繁琐,需要思路清晰。

4结束语
  基于中达电通公司提供的解决方案的典型案例整合了两种不同种类的产品,体现出单一技术平台在集成工程中的一体化特点。



1、引言
在国产高压变频器的设计中,为了提高高压变频器内部控制的灵活性以及在现场应用的可扩展性,通常在高压变频器中内置PLC。自从20世纪70年代台PLC诞生以来,PLC的应用越来越广泛、功能越来越完善,除了具有强大的逻辑控制功能外还具其他扩展功能:A/D和D/A转换、PID闭环回路控制、高速记数、通信联网、中断控制及特殊功能函数运算等功能,并可以通过上位机进行显示、报警、记录、人机对话,使其控制水平大大提高。
本文以广州智光电机有限公司为攀钢集团成都钢铁有限公司污水处理厂设计生产的国产高压变频器ZINVERT-H800/B10为例,介绍了三菱PLC在高压变频器控制系统中的运用。
2、广州智光电机高压变频器简介
广州智光电机有限公司推出的新一代高性能ZINVERT系列智能高压变频调速系统为直接高-高型变频调速系统,通过直接调节接入高压电机定子绕组的电源频率和电压来实现电动机转速的调节从而达到节能的目的。它是集大功率电力电子控制技术、微电子技术、高速光纤通信技术、自动化控制技术和高电压技术等多学科为一体的高新技术产品。该产品采用主流高性能专用双DSP控制系统和大规模集成电路设计,通过jingque的数字移相技术和波形控制技术实现了高压电机的灵活调节和能耗控制。
3、PLC在国产高压变频器中的设计使用
3.1 PLC主要逻辑控制
(1)用户要求高压变频器在出现故障停机时能快速自动切换到工频旁路运行,笔者给高压变频器专门配置了可以实现自动旁路功能的旁路柜,如图1所示,K1~K4为手动操作刀闸,J1~J3为高压真空接触器。在变频器发生故障时,旁路柜可以在几秒内完成从变频到工频的转换;而变频器在工频运行时,通过1个按钮就可以实现变频器从工频到变频的转换。这样的控制要求增加了变频器整机控制逻辑的复杂性。

图1 自动旁路柜
自动旁路柜控制逻辑简要介绍如下:
变频调速系统退出变频转工频运行有两种方式,一种是自动方式,一种是手动方式,选择自动方式时,当变频器发生停机故障时变频器自动从变频转工频;选择手动方式时则需人工操作。
变频调速系统退出工频转变频运行也有两种方式,一种是自动方式,一种是手动方式,选择自动方式时,只需在控制柜上按一个按钮,变频器就自动完成从工频转变频;选择手动方式时则需人工操作.
(2)PLC控制系统原理图
PLC主机选用输入输出点数48点,型号为FX2N-48MR,PLC作为系统逻辑量控制的控制核心,在自动旁路柜的逻辑关系控制中起着至关重要的作用。PLC控制系统原理图如图2所示。
图2 PLC控制系统原理图
旁路柜的逻辑控制要求比较复杂,采用PLC控制,接线简单,提高了可靠性;旁路柜的逻辑更改也变得很简单,只需修改PLC梯形图程序就可以了,很方便满足用户现场的控制要求。
(3)PLC功能指令实现高压变频器PID闭环控制
用户现场对变频器闭环控制提出的要求是:变频器能够根据用户系统用水量的变化,自动调整变频泵的转速,实现管网恒压供水;同时还可以在液晶屏上设定压力目标值。
针对用户的要求,PLC另外配置了模拟特殊模块FX2N-4AD和FX2N-2DA。FX2N-4AD为模拟输入模块,有四个输入通道,大分辨力12位,模拟值输入范围为-10V~10V或者4~20mA;FX2N-2DA为模拟输出模块,有2个输出通道,大分辨力12位,模拟值输出值范围为-10V到10V或者4到20 mA。这样通过读取指令(FROM)和写入指令(TO),以及PLC带有的PID闭环控制功能指令(如图3所示),就可以实现对用户现场的管网水压进行PID闭环控制。
图3 带有的PID闭环控制功能指令的PLC 程序
其具体编程过程是这样:PLC读取指令(FROM)读取用户水压反馈值,把反馈值用移动指令(MOV)存入PID指令中的D12数据地址里; 把用户的水压设定值用移动指令(MOV)存入PID指令中的D10数据地址里;D200~D222保存PID的运行参数;D14为PID指令的运算值输出,通过PLC的写入指令(TO)把PID闭环运算结果D14写入模拟输出模块,再通过模拟输出模块转换成-10V~10V或者4~20mA的模拟信号送入高压变频器控制器进行频率设定。
在进行PID运行参数设置时,P、I、D的参数设定尤其重要,其设定的好坏直接关系到管网水压控制的好坏。P表示比例增益,设定范围为0~99(%),比例调节设定大,系统出现偏差时,可以加快调节,减少误差,但是过大的比例增益,会造成系统不稳定;I表示积分时间,设定范围为0~32767(*100ms),积分时间越小,积分作用就越强,反之I越大则积分作用弱;D表示微分时间,设定范围为0~32767(*10ms),微分调节有超前的控制作用,合适的微分时间能改善系统的动态性能。
攀钢污水处理厂供水管网比较庞大,管网水压对水泵转速的变化响应比较缓慢, 因此PID的计算速度不能过快,即比例调节不能过快,否则如果管网水压突然变化大时,变频器的调节容易形成较长时间的振荡。根据这一情况,如图3所示,可以在PLC控制程序中加入PID间隔计算时间 (T0)以及PID运算死区(M0),这样就可以把PID的计算速度调节至与管网水压变化速度相一致,避免管网水压震荡。
(4)PLC功能指令实现PLC与变频器上位机通信
为了使变频器上位机能对PLC进行显示、报警及记录,PLC还配置了通信模块FX2N-232BD,实现与变频器上位机的串口通信,通信编程指令如图4所示。

PLC RS232串口通信可使用无协议(RS指令)或专用协议与上位机进行通信,本例中使用无协议与上位机进行通信,如图四所示:D8120用于设定PLC通信格式,D50表示发送起始地址,K60表示发送字节数量,D150表示接收起始地址,K20表示接收字节数量。
4、结束语
高压变频器自动旁路柜采用PLC进行旁路逻辑控制,通过在攀钢污水处理厂运行的智光高压变频器模拟故障说明,高压变频器自动旁路柜在从变频转工频,工频转变频的相互切换非常方便,能在10s以内完成,大大提高了水泵运行的可靠性。现场PID闭环控制效果非常理想,水压波动非常小,波动在超过0.1kg时,变频器能迅速调节转速,把水压控制在设定范围内,调节转速时不会产生任何振荡。

 剪切系统结构示意图2 硬件构成

  剪切系统的结构示意如图1所示。由图1可见,系统的机械部分由夹送机构和剪切机构两部分组成:夹送机


构由交流伺服电机驱动旋转,上下夹送辊的加紧力调至刚好压紧板料,使板料在两辊中按设定的速度无滑动滚动;剪切机构与一般剪床同,只是剪切的驱动力来自高压气体。


  系统的电气控制部分采用日本光洋的SU系列可编程序控制器;包括SU-5M(CPU模块),U-01SP单轴伺服定位控制摸块;U-05N16点DC12/24V输入模块;U-01T8点AC220V继电器输出模块等;人机界面为CL-02DS液晶汉字显示设定单元。伺服系统采用日本安川的交流伺服电机SGMGH-20ADA61和SGDM-20AD数字交流伺服驱动器。

  3 定尺剪切控制

  3.1 控制原理

  在手动状态(板料安装)时,夹送辊可作正反2个方向转动。在自动工作情况下,夹送辊的转动方向如图1所示。若确定单位脉冲的移动量和编码器每转一圈的脉冲数,当夹送辊的直径一定时,夹送辊每转一定的角度或圈数,板料的移动长度也就确定了。当PLC检测到伺服电机反馈的脉冲数达到所设定的目标值(既长度)时,PLC发出信号,交流伺服电机停止转动,同时,方向控制阀的电磁铁通电,气缸执行剪切动作。剪切机构的每一次剪切使接近开关获得1个脉冲,此脉冲即可计算剪切数量,又能作为下1个循环的开始信号。

  3.2 参数设置

  (1) 一般参数的设置

  a) 主轴转速(自动运转时,下同)的确定:确定主轴的转速要兼顾2个方面,一是生产能力,二是转动惯性。转速不是越快越好,太快,转动惯性大,达不到jingque停止的要求,剪切长度精度不高;当然,慢了,达不到生产力的要求。

  b) 脉冲当量的确定:在本例中,之所以能进行高精度定尺剪切,实际上就是jingque的控制夹送辊每个脉冲转动的角度(脉冲当量)。当夹送辊直径一定时,它转过一定的角度,就对应转过一定的弧长,既为板料移动的长度。从理论上说,脉冲当量越小,剪切长度精度越高,但对控制系统的要求也越高,不经济。一般情况下,脉冲当量比加工精度高一个数量级即可。

  c) 脉冲编码器反馈的每转脉冲数(分周比)的确定:脉冲当量确定以后,这个参数就好确定了。设计时,夹送辊的直径已定,则其周长也已确定。只要用主动辊的周长除以脉冲当量,即为脉冲编码器反馈的每转脉冲数。该数应为整数,当得数为小数时,与脉冲当量一同作一些调整即可。应注意的是确定的脉冲编码器反馈的每转脉冲数必须在所选的脉冲编码器大的每转脉冲数范围之内。

  d) 伺服驱动器工作模式:速度控制模式。

  (2) 智能模块的参数选择

  U-01SP智能模块的参数共有21个,主要参数有:

  a) 设定的主轴转速时智能模块发出的脉冲频率FBF:U-01SP智能模块与数字式交流伺服驱动器配合使用,可以在交流伺服电机额定的转速内任意设定,这个设定值就是FBF:

  FBF(kHz)=主轴转速(RPS)×脉冲编码器反馈的每转脉冲数(PPR)

  该参数必须在智能模块的大FBF范围之内。

  b) 主轴手动速度的确定:根据手动安装板料的需要,一般设定为主轴转速的10%~20%。

  c) 加、减速时间,即主轴从0转速到额定转速(或反之)所需要的时间:主要根据剪切的板长确定,剪切的板长较短时,该时间可短些,反之,可长些。对于本例,可选500~1000ms。

  d) 紧急停止时间,在自动运转时,从额定转速到停止转动的时间:当系统发生意

  外时,控制系统需急停,以减少对系统和机器的损伤。该时间可少些,一般选500ms以内。

  其余参数可用该模块出厂时的原设定值或根据需要设定。

  3.3 程序设计

  这里使用的SU-5M型PLC与大多数型号的中型PLC在程序设计上并无大的差异,由于采用了语言编程,更接近计算机的流程图设计思路。特别需要指出的是U-01SP单轴伺服定位控制模块采用类似数控CNC系统的G语言,编程方便、功能强大。


  举例:G00 X(位置值) F(速度值);代表一个典型的阶梯形定位指令。

  单轴伺服定位控制模块U-01SP的控制信号通过模块所占I/O定义号对应,程序设计思路如图2所示。

  (1) PLC上电后,首先进行初始化处理:把为系统建立的参数表从CPU写入智能模块U-01SP、检查系统有无错误、数据有无错误、语法有无错误,检查结果判断为正常时,系统进入伺服准备状态,这其中包括进入到动作方式(手动、自动)选择、数据监控状态(伺服数据读出)、伺服异常(数据出错、系统出错、语法出错)处理完毕状态。

  (2) 在手动状态下,按下主轴正、反转按钮,主轴

在制造工业中存在大量的开关量为主的开环的顺序控制,它按照逻辑条件进行顺序动作号按照时序动作;另外还有与顺序、时序无关的按照逻辑关系进行连锁保护动作的控制;以及大量的开关量、脉冲量、计时、计数器、模拟量的越限报警等状态量为主的—离散量的数据采集监视。由于这些控制和监视的要求,使PLC发展成了取代继电器线路和进行顺序控制为主的产品。 近年来,PLC厂家在原来CPU模板上提逐渐增加了各种通讯接口,现场总线技术及以太网技术也同步发展,使PLC的应用范围越来越广泛。 PLC具有稳定可靠、价格便宜、功能齐全、应用灵活方便、操作维护方便的优点,这是它能持久的占有市场的根本原因。

按此在新窗口浏览图片
  PLC控制器本身的硬件采用积木式结构,有母板,数字I/O模板,模拟I/O模板,还有特殊的定位模板,条形码识别模板等模块,用户可以根据需要采用在母板上扩展或者利用总线技术配备远程I/O从站的方法来得到想要的I/O数量。
  PLC在实现各种数量的I/O控制的同时,还具备输出模拟电压和数字脉冲的能力,使得它可以控制各种能接收这些信号的伺服电机,步进电机,变频电机等,加上触摸屏的人机界面支持,施耐德的PLC可以满足您在过程控制中任何层次上的需求。

1、引言

燃烧控制系统是电厂锅炉的主控系统,主要包括燃料控制系统、风量控制系统、炉膛压力控制系统。目前大部分电厂的锅炉燃烧控制系统仍然采用PID控制。燃烧控制系统由主蒸汽压力控制和燃烧率控制组成串级控制系统,其中燃烧率控制由燃料量控制、送风量控制、引风量控制构成,各个子控制系统分别通过不同的测量、控制手段来保证经济燃烧和安全燃烧。如图1所示。


图1 燃烧控制系统结构图

2、控制方案

锅炉燃烧自动控制系统的基本任务是使燃料燃烧所提供的热量适应外界对锅炉输出的蒸汽负荷的要求,同时还要保证锅炉安全经济运行。一台锅炉的燃料量、送风量和引风量三者的控制任务是不可分开的,可以用三个控制器控制这三个控制变量,但彼此之间应互相协调,才能可靠工作。对给定出水温度的情况,则需要调节鼓风量与给煤量的比例,使锅炉运行在佳燃烧状态。同时应使炉膛内存在一定的负压,以维持锅炉热效率、避免炉膛过热向外喷火,保证了人员的安全和环境卫生。

2.1 控制系统总体框架设计

燃烧过程自动控制系统的方案,与锅炉设备的类型、运行方式及控制要求有关,对不同的情况与要求,控制系统的设计方案不一样。将单元机组燃烧过程被控对象看作是一个多变量系统,设计控制系统时,充分考虑工程实际问题,既保证符合运行人员的操作习惯,又要大限度的实施燃烧优化控制。控制系统的总体框架如图2所示。


图2 单元机组燃烧过程控制原理图

P为机组负荷热量信号为D+dPbdt。控制系统包括:滑压运行主汽压力设定值计算模块(由热力系统实验获得数据,再拟合成可用DCS折线功能块实现的曲线)、负荷—送风量模糊计算模块、主蒸汽压力控制系统和送、引风控制系统等。主蒸汽压力控制系统采用常规串级PID控制结构。

2.2 燃料量控制系统

当外界对锅炉蒸汽负荷的要求变化时,必须相应的改变锅炉燃烧的燃料量。燃料量控制是锅炉控制中基本也是主要的一个系统。因为给煤量的多少既影响主汽压力,也影响送、引风量的控制,还影响到汽包中蒸汽蒸发量及汽温等参数,所以燃料量控制对锅炉运行有重大影响。燃料控制可用图3简单表示。


图3 燃料量控制策略

其中:NB为锅炉负荷要求;B为燃料量;F(x)为执行机构。

设置燃料量控制子系统的目的之一就是利用它来消除燃料侧内部的自发扰动,改善系统的调节品质。另外,由于大型机组容量大,各部分之间联系密切,相互影响不可忽略。特别是燃料品种的变化、投入的燃料供给装置的台数不同等因素都会给控制系统带来影响。燃料量控制子系统的设置也为解决这些问题提供了手段。

2.3 送风量控制系统

为了实现经济燃烧,当燃料量改变时,必须相应的改变送风量,使送风量与燃料量相适应。燃料量与送风量的关系见图4。


图4 燃料量与送风量关系

燃烧过程的经济与否可以通过剩余空气系数是否合适来衡量,过剩空气系数通常用烟气的含氧量来间接表示。实现经济燃烧基本的方法是使风量与燃料量成一定的比例。

送风量控制子系统的任务就是使锅炉的送风量与燃料量相协调,可以达到锅炉的高热效率,保证机组的经济性,但由于锅炉的热效率不能直接测量,故通常通过一些间接的方法来达到目的。如图5所示,以实测的燃料量B作为送风量调节器的给定值,使送风量V和燃料量B成一定的比例。


图5 燃料量空气调节系统

在稳态时,系统可保证燃料量和送风量间满足

选择使送风量略大于B完全燃烧所需要的理论空气量。这个系统的优点是实现简单,可以消除来自负荷侧和燃料侧的各种扰动。

2.4 引风量控制系统

为了保持炉膛压力在要求的范围内,引风量必须与送风量相适应。炉膛压力的高低也关系着锅炉的安全和经济运行。炉膛压力过低会使大量的冷风漏入炉膛,将会增大引风机的负荷和排烟损失,炉膛压力太低甚至会引起内爆;反之炉膛压力高且高出大气压力的时候,会使火焰和烟气冒出,不仅影响环境卫生,甚至可能影响设备和人生安全。引风量控制子系统的任务是保证一定的炉膛负压力,且炉膛负压必须控制在允许范围内,一般在-20Pa左右。

控制炉膛负压的手段是调节引风机的引风量,其主要的外部扰动是送风量。作为调节对象,炉膛烟道的惯性很小,无论在内扰和外扰下,都近似一个比例环节。一般采用单回路调节系统并加以前馈的方法进行控制,如图6所示。


图6 引风量控制子系统

图中为炉膛负压给定值,S为实测的炉膛负压,Q为引风量,V为送风量。由于炉膛负压实际上决定于送风量和引风量的平衡,故利用送风量作为前馈信号,以改善系统的调节性能。另外,由于调节对象相当于一个比例环节,被调量反应过于灵敏,为了防止小幅度偏差引起引风机挡板的频繁动作,可设置调节器的比例带自动修正环节,使得在小偏差时增大调节器的比例带。对于负压S的测量信号,也需进行低通滤波,以抑制测量值的剧烈波动。

3、系统硬件配置

在锅炉燃烧过程中,用常规仪表进行控制,存在滞后、间歇调节、烟气中氧含量超过给定值、低负荷和烟气温度过低等问题。采用PLC对锅炉进行控制时,由于它的运算速度快、精度高、准确可靠,可适应复杂的、难于处理的控制系统。因而,可以解决以上由常规仪表控制难以解决的问题。所选择的PLC系统要求具有较强的兼容性,可用小的投资使系统建成及运转;其次,当设计的自动化系统要有所改变时,不需要重新编程,对输入、输出系统不需要再重新接线,不须重新培训人员,就可使PLC系统升级;后,系统性能较高。硬件结构图如图7所示。


图7 硬件结构图

根据系统的要求,选取西门子PLCS7-200 CPU226 作为控制核心,同时还扩展了2个EM231模拟量输入模块和1个CP243-1以太网模块。CPU226的IO点数是2416,这样完全可以满足系统的要求。同时,选用了EM231模块,它是AD转换模块,具有4个模拟量输入,12位AD,其采样速度25μs,温度传感器、压力传感器、流量传感器以及含氧检测传感器的输出信号经过调理和放大处理后,成为0~5V的标准信号,EM231模块自动完成AD转换。

S7-200的PPI接口的物理特性为RS-485,可在PPI、MPI和自由通讯口方式下工作。为实现PLC与上位机的通讯提供了多种选择。

为实现人机对话功能,如系统状态以及变量图形显示、参数修改等,还扩展了一块Eview500系列的触摸显示屏,操作控制简单、方便,可用于设置系统参数, 显示锅炉温度等。还有一个以太网模块CP243-1,其作用是可以让S7-200直接连入以太网,通过以太网进行远距离交换数据,与其他的S7-200进行数据传输,通信基于TCPIP,安装方便、简单。

4、系统软件设计

控制程序采用STEP7-MicroWin软件以梯形图方式编写,其软件框图如图8所示。


图8 软件主框图

S7-200PLC给出了一条PID指令,这样省去了复杂的PID算法编程过程,大大方便了用户的使用。使用PID指令有以下要点和经验:

(1)比例系数和积分时间常数的确定。应根据经验值和反复调试确定。
(2)调节量、给定量、输出量等参数的标准归一化转换。
(3)按正确顺序填写PID回路参数表(LOOP TABLE),分配好各参数地址。

5、结束语

单元机组燃烧过程控制系统在某火电厂发电机组锅炉协调控制系统中投入使用。实际运行情况表明:由于引入负荷模糊前馈,使得锅炉燃烧控制系统作为协调控制的子系统,跟随机组负荷变化的能力显著提高,风煤比能够在静态和动态过程中保持一致;送、引风控制系统在逻辑控制系统的配合下运行的平稳性和安全性提高,炉膛负压波动减小,满足了运行的要求;在机组负荷不变时,锅炉燃烧稳定,各被调参数动态偏差显著减少,实现了锅炉的优化燃烧;采用非线性PID调节方式,解决了引风挡板的晃动问题。

采用西门子的PLC控制,不仅简化了系统,提高了设备的可靠性和稳定性,同时也大幅地提高了燃烧能的热效率。通过操作面板修改系统参数可以满足不同的工况要求,机组的各种信息,如工作状态、故障情况等可以声光报警及文字形式表示出来,主要控制参数(温度值)的实时变化情况以趋势图的形式记录显示, 方便了设备的操作和维护,该系统通用性好、扩展性强,直观易操作。



没有

联系方式

  • 地址:上海松江 上海市松江区石湖荡镇塔汇路755弄29号1幢一层A区213室
  • 邮编:201600
  • 联系电话:未提供
  • 经理:聂航
  • 手机:15221406036
  • 微信:15221406036
  • QQ:3064686604
  • Email:3064686604@qq.com