西门子6ES7212-1AB23-0XB8诚信交易
西门子6ES7212-1AB23-0XB8诚信交易
1包装线的控制要求和控制原理
包装线的工艺流程为:包装片材加热→片材吸塑成形→零件配套、装盒→加盖、封装→冲切→产品输出线外。系统控制包括电路(全线拖动和通电加热)及气动系统控制两部分。全线拖动时,各机构停止运动,而停止拖动时,各机构进行工作。机构运动全部由气缸进行驱动。全线拖动使各工序依次进入下一步,每次拖动一个工位的长度,采用步进电机拖动。
吸塑工位的驱动气缸为A,热封工位的驱动气缸为D,采用同一主控阀以获得同步运动;零件配套装盒工位的两套驱动气缸为B、C,其动作有严格的联锁要求;冲切工位的驱动气缸为E、F,也用同一主控阀控制其同步运动。
流水线的控制系统是一个封闭的位置程序控制线路,根据控制要求,启动初始信号后,逻辑控制线路发出执行信号,命令执行机构进行步动作,执行元件在其行程的终端触发行程开关而发出主令信号,主令信号输入线路后,经逻辑运算发出第二步动作的执行信号……。整个系统按设计好的逻辑顺序发出执行信号并接受主令信号,完成控制循环,执行机构则根据执行信号严格按顺序进行动作。这种以严格的顺序要求为特征的控制系统,选择PLC进行控制是很合适的。
PLC采用循环扫描的方式进行工作。一个完整的扫描过程分为采样输入、程序执行和输出刷新三个阶段。采样输入阶段是将各输入端的状态送入相应的寄存器,相当于控制系统接受执行机构反馈的主令信号,只不过逻辑线路控制是按顺序执行上一步动作后,向系统反馈主令信号,由控制系统根据主令信号进行规定的逻辑运算后再发出下一步执行信号,控制是在过程中进行并完成的,而PLC是集中地接受各阶段的主令信号,并将其存贮备用;第二阶段是程序执行阶段,PLC的微处理器逐条执行指令,将输入状态寄存器中相应的主令信号调出来,与原运算结果一起进行处理,包括逻辑的、算术的运算,并将结果送输出寄存器。由于PLC是逐条执行指令,其运作特点保证了执行机构动作的顺序性,线路运算因不必考虑消除障碍信号,防止机构误动作的出现而大为简化;第三阶段是输出刷新:输出状态寄存器的执行信号通过PLC的输出部分转换成电压或电流信号输出,驱动执行机构。
2系统的控制流程和控制设计
根据包装线自动控制的要求和PLC的控制特点,控制系统设计的步工作是绘制系统的控制流程图,如图1示。
图1自动包装线控制流程图
从流程图中可以看到这是一个多变量、多往复的工作程序。零件配套装盒工位的驱动气缸B、C在一个运动循坏中各往复3次。PLC机的每个输出控制点在一个扫描(运动)循环中只能输出(OUT)一次,不能重复使用。在控制设计时,对应于B、C主控阀的每个单向运动,各安排3个控制输出点。PLC在顺序地执行每条指令时B、C缸的主控阀将有序地进行往复运动。
综合考虑控制要求、技术指标、经济性及输出输入接口要留有一定的余地,选用OMRON公司的C系列微型机C-40P,该机基本单元有24点输入,16点输出,输出可扩展到32点。
将输出、输入接口进行地址分配,如图1示。
设计控制指令时安排了13个计时器。另外启用19个中间继电器,地址代号1000系列。计时器和中间继电器地址号只是作为控制指令中的特殊代码(助记符),编进梯形图或简易程序,输入编程器由PLC机去执行运算。绘制PLC控制梯形图。如图2示。(限于篇幅,梯形图作了删节)。
图2系统控制梯形图
1 引言
半精镗专用镗床是应用于加工汽车连杆的专用设备,汽车连杆是发动机的重要组成部件,它直接影响到发动机及汽车的性能指标。如果机床电控系统采用继电接触器控制,由于使用了大量的机械触点,导致设备的响应速度慢、可靠性差、故障率高、接线复杂、不便于调整和维修,加工产品的质量无法得到可靠保证。可编程序控制器具有通用性好、抗干扰能力强、等特点,运用其控制逻辑的软件设计功能可在很大程度上改善机床电控系统的柔性;同时,其可靠性得到明显增强,具有很好的社会和经济效益。
2 半精镗专用机床的组成及加工工艺过程
半精镗专用机床是由左/右滑台、左/右动力头、工件定位夹具、液压站、左/右主轴电动机等组成。左/右滑台及工件的夹紧和放松动作都由液压提供动力。汽车连杆的加工要求精度高。在加工时,要一面两销定位,同时装卡两个工件,使两个工一件一起加工。其自动加工工艺过程如下:
(1)在机床的初始状态(左/右滑台停在原位、左/右主轴停转)时,同时装卡两个工件,人工认销后,启动机床并开始夹紧两工件。
(2)当工件夹紧到位,且压力继电器动作时,开始自动拔销。
(3)拔销完毕,右动力头在右滑台的带动下快速前进(下称快进),同时右主轴启动。
(4)当右滑块快进到位时,压迫液压行程调速阀,自动转为工进速度,开始对工件右面的两个大孔和两个小孔进行加工。工进速度行进到终点,4孔同时倒角。
(5)倒角延时完毕,右滑台快退回原位自停,同时右主轴停转。
(6)左动力头在左滑台的带动下快进,同时左主轴启动。
(7)当左滑台快进到位时,压迫液压行程调速阀,自动转为工进速度,开始对工件左面的两个大孔和两个小孔进行加工。工进速度行进到终点,4孔同时倒角。
(8)撞死铁且保压达到压力后,左滑台快退回原位自停,同时左主轴停转。(9)接着进行自动插销的操作,当插销到位时自动开始放松工件。
(10)工件放松到位时,人工取下工件,一次加工过程结束。此时,机床处于初始状态。欲进行下一次加工,要重复上述过程。自动加工工艺过程可用图1的流程图表示。
3 设备的控制要求
(1)该机床按要求设有手动和自动两种控制方式。加工工件是在自动方式下进行的,两个动力头位置的调整、插销/拔销等操作,有时需用手动方式。
(2)机床必须处于初始状态时,自动方式才可以启动。所以,设置机床的初始状态显示,给操作人员提示。
(3)为了有效地防止误操作,在启动自动运行方式时,必须同时按住两个按钮才能启动,在手动夹紧工作时,也需同时按住两个按钮才有效。
(4)在自动运行过程中,若误按其他按钮时不应影响程序的正常执行。
(5)启动自动运行时,处于插销状态下不能启动右滑台前进,必须在拔销后才能启动。
(6)当自动方式结束一个循环且对两件连杆加工完后,机床应处于初始状态。
4 PLC的I/O分配
半精镗专用机床选用PLC的机型是FP1系列40点主控单元,该机24个输人点,16个输出点。具体I/O分配如表1所示。
5 各工步时电磁阀的状态
各工步时电磁阀的状态如表2,所示。表中电磁阀的状态用“+”和“(+)”来表示,“+”表示线圈接通,“(+)”表示线圈接通后保持接通状态。
6 各压力继电器的状态
SPO:从工件夹紧到位开始的全部加工过程中一直保压,其触点动作,当放松工件时,触点复位。SP1:右工进达到一定压力时其触点动作,右快退时触点复位。SP2:左工进达到一定压力时其触点动作,左快退时触点复位复位。
7 半精镗专用机床PLC控制程序
图2是半精镗专用机床的PLC控制梯形图,控制程序是根据工艺过程、控制要求和流程图编制而成的。对此控制程序现作几点说明:
(1)机床的自动运行方式必须在初始状态下才能启动,机床在原位时,右滑台原限位开关ST4、左滑台原限位开关ST6、插销到位限位开关ST7、工件放松到位限位开关ST8被压,X112, X14X15,X16开接点接通,R3线圈接通,原位指示灯亮。这时把方式选择开关打到自动挡,XO常开点接通,R4内部继电器线圈接通,R4的常开接点闭合,为下一步夹紧作好准备。(2)夹紧夹紧是整个加工过程的步,如确定机床在原位,把选择开关拨到自动档,按下自动方式启动按钮SB7,SB8,X7,X8的常开接点闭合,Y7、Y9,YB线圈接通,驱动夹紧电磁阀(1)YV5线圈、夹紧电磁阀(2) YV7线圈、夹紧电磁阀(3) YV9线圈接通,把要加工的两工件夹紧。如把方式选择开关拨到手动,按下手动夹紧工件操作按钮SB1、手动夹紧工件操作按钮SB2,即可实现工件夹紧的手动操作。
(3)拔销夹紧之后要拔销才能进行加工。在自动方式下,R4常开接点接通,RZ是用来记忆总加工状态的内部继电器,在没有进行加工之前,R2内部继电器的常闭点处于接通状态,由于夹紧过程已完成,工件夹紧压力继电器SPO、工件夹紧到位限位开关STl动作,XB、XF常开点闭合,YE输出继电器线圈接通,开始拔销,拔销到位后,插销到位限位开关ST7动作,X10常闭点断开,拔销完成。加工前的准备工作就完成了。
(4)拔销到位后,插销到位限位开关ST7动作,X10常开点闭合,快进YVl线圈接通,右滑台快进,接着主轴启动。
(5)为防止左右滑台不能同时快进,在左滑台快进逻辑行串人X12的常开点,只有右滑台在原位位时,限位开关ST4才动作,X12的常开点才能闭合,左滑台才能快进。
8 半精镗专用机床电控系统安装时应注意以下几个问题
(1)为防止来自电源线的干扰,电源线使用双绞线,每根导线截面应在1.25 mm2以上,电源通过1:1的隔离变压器供给PLC,降低电噪声。另外为了防止电压过高损坏PLC,电源输人端加上压敏电阻。(2)PLC输人线路与动力线路不能位于同一线槽或电线管内,三相动力线路束在一起走线,并且使两部分尽可能相互垂直走线,输人线也可采用屏蔽线,以防动力线路干扰输入线路。
(3)为防止过热,PLC不许安装在变压器等发热元件的正上方,在元器件留有适当空隙,以便散热,并且在配电箱上安装风扇降热。
9 结语
采用PLC对专用镗床进行电气控制是一种行之有效的技术进步手段。实践证明,它降低了专用镗床电控系统的故障率,大大提高了其工作的可靠性,改善了其控制性能,提高了机床的加工精度,与此同时,在一定程度上降低了设备能耗。在实际使用中,效果良好。
引言
随着社会的不断发展,自动旋转门越来越多,对旋转门控制系统的控制要求也就越来邀高。例如:当无人接近旋转门时,旋转门能自动停止;当进出旋转门的人比较多时,旋转门能自动加速旋转;当按下残疾人专用按键时,旋转门能启用残疾人专用旋转速度;当行人通过旋转门不慎被夹时,旋转门能迅速制动,待行人解脱后旋转门能自动恢复正常旋转速度;旋转门的全部运行状态都送入楼宇自动监控系统;等等。因此,要求旋转门控制系统在控制上具有更高的自动化和智能化。下面通过一实例详细介绍利用通用变频器和三菱FX系列可编程逻辑控制器(PLC)实现上述要求的控制方法。
1 系统硬件设计
图1是旋转门控制系统原理结构。该系统主要由旋转门、接近传感器、可编程序控制器和变频器组成。
1.1 旋转门及接近传感器
该旋转门由4扇玻璃门相互垂直地镶嵌在同一个轴柱上构成,电机通过减速机构带动旋转门的轴柱,从而产生门的旋转运动(见图1)。
图1 旋转门控制系统结构图
为了实现系统的全部自动化和智能化,系统在旋转门圆形框架的上端,安装了4个接近传感器,其中3个面向进门的行人(见图1中的A1),一个面向出门的行人(见图1中的A2);在门框外侧的边沿上分别安装了2套防夹传感器(见图1中的E1和E2);在圆弧门框外侧的表面上,分别安装了暂停按键和残疾人专用换速按键(见图1中的B1、B2和C1、C2);D1和D2是旋转门的定位或加减速起点行程开关。
1.2 FX2-32 PLC
该系统利用日本三菱公司的FX2系列PLC,作为该系统的控制指挥中心。该PLC把来自旋转门现场的检测信号、变频器的状态信号以及楼宇自动监控系统的指令,经过收集、处理后,完成对变频器的频率控制和对楼宇自动监控系统的信息反馈。当X0闭合时,启动该旋转门控制系统。
当xl闭合时,旋转门的转速不受客流量多少的控制,以固定不变的转速旋转。反馈给楼宇自动监控系统的信息状态如表1所示。
表1 旋转门运行状态表
注:表中“1”表示“ON”,“0”表示“OFF”。
1.3 变频器
由于旋转门处于公共场所,行人或物品阻碍旋转门正常旋转的现象时常发生,因此导致电动机的负载变化大、过电流现象发生频繁,所以选用通用FVR0l5E7s—7Ex型变频器。该变频器具有快速响应的电流限制功能,当负载波动相当大时,变频器不跳闸,能自动减速运行;当负载恢复正常时,变频器能自动升速到设定值。使用该变频器,电动机低速驱动能力强,起动转矩能达到额定值的150%。该变频器还具有电压自整定等一系列先进功能。变频器接线原理见图1,所有动作都由PLC控制。
2 系统软件设计
2.1 变频器的主要控制参数
经过现场调试后,变频器的主要控制参数确定如下:
当客流量比较小或Xl为“ON”时,变频器的工作频率为42 Hz(Y11为“ON”时),电机起动时间6 s,制动时间15 s;当客流量比较大时(X3、X4和X5都为“ON”时),变频器的工作频率为50Hz(Y11和Y10同时为“ON”时);当次按动换速键时,变频器的工作频率变为21 Hz(Y11和Y13同时为“ON”时),当第二次按动换速键时,变频器的工作频率由其他现场状态控制;当有行人不慎被夹时,旋转门迅速制动并待行人解脱后,经过10 s的延迟,启用变频器第二“加/减速”选择,自动恢复到正常旋转速度(电机起动时间和制动时间均为25 s,实现方法是Y11和Y3同时为“ON”)。变频器主要控制端子与输出频率之间的关系如图2所示。
图2 变频器输出频率与控制端子的关系
2.2 PLC控制变频器的程序
图3是根据系统要求编制的PLC程序。在编制PLC程序时,应注意如下几点:① 在旋转门机械抱闸开始前应先让变频器脱离电网,以避免变频器受损;② 当残疾人专用速度启用时,无论在门内还是门外,第二次按动此功能按键时应使变频器恢复正常运行速度。其中“M3”为防夹传感器动作时的互锁辅助触点。
图3 PLC控制变频器的程序
2.3 旋转门运行状态诊断程序
楼宇自动监控系统除了使用摄像机获取旋转门的外部工作状态信息外,还需要使用PLC获取旋转门控制系统内部的工作状态信息。所以在编辑控制系统内部状态诊断程序时,不但要照顾到现场维护人员能利用PLC诊断故障,还照顾到楼宇自动监控系统准确、方便地使用PLC提供的诊断信息。旋转门控制系统内部状态诊断PLC程序梯形图如图4所示。
图4 旋转门运行状态诊断程序
3 结语
该旋转门设计新颖、外观大方、功能齐全、使用控制方便,是集机电于一体化的高新技术产品。为了使系统更加可靠,安装时要考虑到下雨天避免雨水进人控制系统的措施,行人所接触到的按键也一定要保证安全。同时,接近传感器的可靠性也是实现旋转门控制系统自动化和智能化关键之一。