西门子6ES7231-7PB22-0XA8详细解读
西门子6ES7231-7PB22-0XA8详细解读
在工业控制系统中,PLC作为一种稳定可靠的控制器已经得到了广泛的应用。但是由于中小型PLC的人机接口功能不很完善,不能提供给用户一个友好的交互界面,因此妨碍了对现场运行过程的跟踪与监控。
PLC实际工作中,通常人们采用4种装置为PLC配置人机界面:编程终端、显示终端、工作站及个人计算机。编程终端主要用于编程与调试,其监控功能相对较弱。显示终端的功能比较单一,主要用作现场显示。工作站系统很受用户欢迎,它功能全面、使用简单,但由于要配置组态软件,因而价格比较昂贵。个人计算机可配备多种语言,提供优良的软件平台,开发各种应用系统,特别是动态画面显示等,与PLC相结合组成一套PC-PLC监控管理系统,能够充分发挥它们各自的优点。但是在该系统中,关键的问题就是通信,用户对此须做较多的开发工作。
本文详细阐述了PC与PLC互连通信的一般方法,并以永宏公司的FATEK-FBS PLC为对象,以实际四层电梯模型监控系统为例,介绍了利用大家都熟悉的编程语言Visual Basic 和Step7,实现PLC与上位计算机实时通信的通信过程。
2 通信方式
面对众多生产厂家的各种类型PLC,它们各有优缺点,能够满足用户的各种需求,但在形态、组成、功 能、编程等方面各不相同,没有一个统一的标准,各厂家制订的通信协议也千差万别。目前,人们主要采用以下三种方式实现PLC与PC的互联通信:
(1) 通过使用PLC开发商提供的系统协议和网络适配器,来实现PLC与PC机的互联通信。但是由于其通信协议是不公开的,因此互联通信必须使用PLC开发商提供的上位机组态软件,并采用支持相应协议的外设。可以说这种方式是PLC开发商为自己的产品量身定作的,因此难以满足不同用户的需求。
(2) 使用目前通用的上位机组态软件,如组态王、InTouch、WinCC、力控等,来实现PLC与PC机的互连通信。组态软件以其功能强大、界面友好、开发简洁等优点目前在PC监控领域已经得到了广泛的应用,但是一般价格比较昂贵。组态软件本身并不具备直接访问PLC寄存器或其它智能仪表的能力,必须借助I/O驱动程序来实现。也就是说,I/O驱动程序是组态软件与PLC或其它智能仪表等设备交互信息的桥梁,负责从设备采集实时数据并将操作命令下达给设备,它的可靠性将直接影响组态软件的性能。但是在大多数情况下,I/O驱动程序是与设备相关的,即针对某种PLC的驱动程序不能驱动其它种类的PLC,因此组态软件的灵活性也受到了一定的限制。
(3) 利用PLC厂商所提供的标准通信端口和由用户自定义的自由口通信方式来实现PLC与PC机的互连通信。这种方式由用户定义通信协议,不需要增加投资,灵活性好,特别适合于小规模的控制系统。
通过上述分析不难得出,掌握如何利用PLC厂商提供的标准通信端口和自由口通信方式以及大家所熟悉的编程语言来实现PC与PLC之间的实时通信是非常必要的。
3 FATEK-FBS PLC通信方式及原理
FATEK-FBS PLC内部集成的PPI接口为用户提供了强大的通信功能,可在多种模式下工作:PPI、Profibus-DP、自由口方式等。其中自由口通信方式具有特色,通信协议可完全由梯形图程序控制,通过它可以实现PLC与任何具有通信能力的设备进行互连,因而在本系统中选用自由口通信方式。
目前PLC与PC机的链接通信有两种方式,一种是PC机始终处于主导地位,数据的传送都由PC机定时发出命令,另外一种是PLC始终具有优先权。在本电梯模型监控系统中所有的控制信号均为开关量信号,考虑到上位PC机仅实时显示电梯的运行状态,不需向PLC发送控制指令,采用第二种通信方式。利用PLC循环扫描的特点,设备状态一旦改变,PLC立即检测到,并将反映系统状态变化的数据存入指定的数据缓冲区,通过XMT发送指令,将数据通过COM口发至上位机。每个系统的状态对应于数据缓冲区中的一个指定字节,所存储数据均为16进制数据,为保证通信过程的可靠性,上位机对所接受到的数据进行首尾字符校验,如果校验成功,则说明接收到的首末字节之间的数据是正确的,从而进行处理,否则,放弃这批数据,要求对方重发。
4 应用实例与程序设计
(1) 系统构成
FATEK-FBS PLC内部集成的PPI接口物理特性为RS485,而上位机的标准串口为RS232,为了实现两者的通信必须进行协议转换,永宏公司提供的PC/PPI电缆带有RS232/RS485电平转换器,因此再不增加任何硬件的情况下,可以方便的实现二者的互联和协议转换。
作为控制器的FATEK-FBS PLC利用电梯模型自带的电源线实现与四层电梯模型的互连,该电梯模型为教学试验装置,具备一般电梯的基本功能。硬件连接如图1所示。
图1 硬件连接示意图
(2) PLC部分编程
① 自由端口的初始化
在自由口通信模式下,通过设置特殊存储器SMB30(端口0),来为自由端口通信选择波特率、奇偶校验和数据位。这些设定必须与PC机设定值相一致。其格式如下:
SMB30
pp为奇偶校验选择,d为数据位选择,bbb为波特率选择。
 00为无校验,0为每个字符8位,000为38 400
baud,001为19 200baud;
 01为偶校验,1为每个字符7位,010为9 600 baud,011为4 800baud;
 10为无校验,100为2 400baud,101为1 200baud;
 11为奇校验,110为600baud,111为300baud;
mm为协议选择:00为PPI协议,01为自由口协议,10为PPI/主站模式,11默认为PPI/从站模式。
② FATEK-FBS PLC实时向上位PC机传送数据
图2 下位机程序流程图
在对电梯模型控制中,所有的控制信号均为开关量,基于这一特点,系统状态的改变即为这些开关量信号状态的改变,因此可通过跟踪这些开关量信号的上升沿信号、下降沿信号的到来,做为系统状态改变的依据。据此在本系统中,通过对同一个开关量信号的上升沿、下降沿分别定义不同的16进制数的方式,来代表信号的产生与结束,当检测到这些信号产生时,便将这些数据存入指定的数据缓冲区中的字节中,并通过COM口发至上位PC机,同时产生发送完成中断,PLC延迟等待接收来自上位机的应答信号,通过分析存储在接收字符缓冲器SMB2中的数据,判断是否需要重新发送。下位机程序如图2所示。
(3) 上位机部分编程
基于VB处理监控界面图形、数据报表及通信的方便快捷,本课题上位机的编程环境采用VB来实现。VB不仅提供了MSCOMM串行通信控件,而且也为这个控件提供了标准的事件处理函数,并通过设置它的一些属性对通信接口进行初始化,从而很容易的实现了串行通信的问题。
下面介绍一下有关此控件的属性:
Commport,设置通信连接端口。程序必须指定要使用的串行端口的号码,bbbbbbs使用所设置的通信端口与外界进行通信。
Settings,设置初始化参数。其格式为“BBBB,P,D,S”,其中BBBB为连接速度,P为奇偶校验方式,D为数据位数,S为停止位数。默认值是“9 600,n,8,1”。
PortOpen,设置通信连接端口的状态。使用串行端口之前必须先将要使用的串行端口打开。
bbbbb,返回并删除接收缓冲区中的数据流。
bbbbbLen,设置从串行端口读入的字符串长度。
Rthreshold,设置引发接收事件的字符数。
bbbbbMode,设置接收数据数据形式。
OnComm事件,用来处理所有与通信相关的事件。使用事件程序的好处是不需要一直让程序处于检测的状态下,只要事先将程序代码写好,一有事件发生,就会直接执行相对应的程序代码。可见这种事件驱动的方式也为实现实时通信提供了必要的条件。上位机程序如图3所示。PC机根据接收到的信息很容易的实现对每个开关量的状态进行识别,从而控制监控界面的实时显示。
图3 上位机程序流程图
5 结语
以上是基于FATEK-FBS PLC自由口通信方式实现与上位机PC实时通信的一个简单应用。经验证,该方法简单、实时性好,可靠性高,对于逻辑控制系统,是能够实现对被控对象实时监控简单易行的方法。
1 引言
水源热泵空调系统是一种利用自然水源作为冷热源的空调系统,其核心技术是水源热泵技术。所谓水源热泵技术,是利用地球表面浅层水源所吸收的太阳能和地热能而形成的低温低位热能资源,并采用热泵原理,通过少量的高位电能输入,实现低位热能向高位热能转移的一种技术。河水、湖水、地下水等地球表面浅层水源吸收了太阳辐射的能量,水源的温度十分稳定。在夏季,水源热泵空调系统将建筑物中的热量转移到水源中,由于水源温度低,所以可以高效地带走热量。在冬季,水源热泵空调系统从水源中提取能量,根据热泵原理,通过空气或水作为载冷剂提升温度后送到建筑物中。通常,水源热泵消耗1kW的能量,用户可以得到4kW以上的热量或冷量。由于水源热泵空调系统具有高效、节能和环保等优点,近年来得到了越来越多的应用[1][2]。
空调系统的控制主要分为继电器控制系统、直接数字式控制器(DDC)系统和可编程序控制器(PLC)系统等级几种。由于故障率高、系统复杂、功耗高等明显的缺点,继电器控制系统已逐渐被淘汰。DDC控制系统虽然在智能化方面有了很大的发展,但由于其本身抗干扰能力差、不易联网、信息集成度不高和分级分步式结构的局限性,从而限制了其应用。相反,PLC控制系统以其运行可靠、使用维护方便、抗干扰能力强、适合新型高速网络结构等显著的优点,在智能建筑中得到了广泛的应用。为了提高空调系统的经济性、可靠性和可维护性,目前空调系统都倾向于采用先进、实用、可靠的PLC来进行控制[3]。
本文介绍和利时公司HOLLiAS-LEC G3小型一体化PLC在水源热泵空调控制系统中的成功应用,说明了HOLLiAS-LEC G3小型一体化PLC可以很好地实现中央空调智能化控制,达到减少无效能耗、提高能源利用效率和保护空调设备的目的。
2 空调系统介绍
北京市某单位的办公楼采用水源热泵中央空调系统,总建筑面积8550m2,建筑高度20.5m,其中空调面积约6840m2。地下1层为各种设备房和操作间,地上1层为职工食堂、大厅和会议室,地上2~6层为商业办公用房。
室内温度和相对湿度等技术参数的设计要求如表1所示。水源热泵中央空调系统的设计制冷量为860kW,制热量为950kW。空调的主机系统由四台压缩机组成,水源水系统由取水井、渗水井和水处理设备组成。
表1 室内技术参数的设计要求
3 控制系统硬件设计
该水源热泵中央空调系统主要是根据蒸发器和冷凝器进出水温度的变化来控制4台压缩机的启停,使水温稳定在设定的范围内。4台压缩机分成A和B两组,每组各有2台压缩机。系统的I/O点分配如表2所示,其中开关量输入点6个,模拟量输入点4个,开关量输出点5个,模拟量输出点1个。
表2 系统的I/O点分配表
根据输入和输出的要求,该水源热泵中央空调系统的控制器选用和利时公司具有自主知识产权的HOLLiAS-LEC G3小型一体化PLC。考虑到此系统需要一定的备用I/O点,CPU模块选择带有24点开关量的LM3107,其中开关量输入14点,开关量输出10点。模拟量输入模块选用四通道热电阻输入模块LM3312,模拟量输出模块选用两通道模拟量输出模块LM3320。PLC的人机界面选用EView触摸屏。PLC控制系统及相关设备的组成如图1所示,这些配置完全能够满足系统的要求[4][5]。
图1 PLC控制系统的组成
4 控制系统软件设计
控制系统的主要功能是对热泵进行自动启停,显示温度、压力、流量等运行参数,显示压缩机的工作状态,记录设备的运行时间和故障原因,实现对水源热泵中央空调系统的智能控制。从控制系统的主要功能出发,为了增加程序可读性和减少程序代码,PLC程序采用了主程序调用功能块、功能块调用函数的程序结构。PLC程序由1个主程序、11个功能块子程序和1个函数组成,其调用关系如图2所示。程序编译码占用空间为30K。
程序设计的思路是,当PLC上电后,一直进行温度、压力、流量等运行参数的检测,这些检测主要在检测程序、故障程序和A/B组故障停机程序中完成。如果相关参数均无异常,则开机功能块子程序运行,启动压缩机。在开机过程中,同时进行温度判断。如果温度达到了设定值,则进入调节功能块子程序,停止开机功能块子程序,完成开机。根据温度的变化,调节功能块子程序控制压缩机的启停。变频器的控制则是通过调用加载程序和降载程序来实现。
在这些程序中,为了满足压缩机的使用要求,调节功能块子程序是繁琐的,例如压缩机的启动时间要小于30秒、压缩机每小时的启动次数不要超过5次等。为了平衡压缩机的运行时间,增加空调的使用寿命,传统的程序设计采用先启先停、先停先启、开机过程中启动次序轮换等控制方法,来协调压缩机的运行时间。但是,如果本系统采用这种方法,则仍然存在某一台压缩机运行时间过长的问题。因此决定对传统方法进行改进,采用随机启停的控制方法代替先启先停、先停先启的控制方法,解决了压缩机的运行时间不平衡的问题。
图2 程序调用关系图
人机界面选用EView触摸屏,首页如图3所示。输入密码后,点击功能菜单,在弹出的快捷窗口中,可以选择参数查询、运行时间、故障查询、运行状态、参数设定、调节显示、操作界面等子菜单,进行相关的操作和显示。
图3 人机界面首页
5 结论
采用传统的继电器控制系统来实现热泵的控制,由于机械接触点很多,接线复杂,参数调整不方便,而且机械接触点的工作频率低,容易损坏,可靠性差。采用直接数字式控制器(DDC)虽然可以减少接线,可靠性有所提高,但由于DDC其本身的抗干扰能力差、不易联网、信息集成度不高和分级分步式结构的局限性,因此,越来越不能满足复杂多变的智能控制要求。
采用PLC来控制热泵系统,不仅可以通过编程实现复杂的逻辑控制,而且可以在很大程度上简化硬件接线,提高控制系统可靠性,用户操作界面友好,信息集程度高,便于实现智能控制。因此,在热泵空调领域,PLC控制系统取代DDC控制系统是必然趋势。