西门子模块6ES7222-1BD22-0XA0产品型号
西门子模块6ES7222-1BD22-0XA0产品型号
前言 扶梯电气控制已经发展到很高的阶段,特别是EN115-2008标准出版并施行后,对扶梯的安全要求不仅对人非常严格,而且对机器本身的安全检测也非常重视。扶梯的电气控制中,各种微处理器已经广泛应用,单片机、PLC、FPGA等等,这些微处理器的应用使扶梯的电气控制功能更强大,检测范围更广,检测时间更短。 PLC作为可靠的一种微处理器,在工业控制中占有很重要的脚色。经过了长年的时间检验、各种严酷的工业环境的测试,已经发展成为可靠的工业控制器。国内外PLC的生产厂家很多,竞争也非常的激烈,特别是小型PLC。 台达PLC作为其中的一员,以可靠的质量及合适的价格占有一席之地,而且不断的发展壮大。台达小型PLC中,DVP-ES系列有着近30年的工业使用历史,虽然他的运行速度没有EH系列那么高,但是他的可靠性是DVP系列PLC中高的。 、PLC概述 为适应工业环境使用,与一般控制装置相比较,PLC机有以下特点: 1. 可靠性高,抗干扰能力强 工业生产对控制设备的可靠性要求: ①平均故障间隔时间长 ②故障修复时间(平均修复时间)短 任何电子设备产生的故障,通常为两种: ①偶发性故障。由于外界恶劣环境如电磁干扰、超高温、超低温、过电压、欠电压、振动等引起的故障。这类故障,只要不引起系统部件的损坏,一旦环境条件恢复正常,系统也随之恢复正常。但对PLC而言,受外界影响后,内部存储的信息可能被破坏。 ②性故障。由于元器件不可恢复的破坏而引起的故障。 如果能限制偶发性故障的发生条件,如果能使PLC在恶劣环境中不受影响或能把影响的后果限制在小范围,使PLC在恶劣条件消失后自动恢复正常,这样就能提高平均故障间隔时间;如果能在PLC上增加一些诊断措施和适当的保护手段,在性故障出现时,能很快查出故障发生点,并将故障限制在局部,就能降低PLC的平均修复时间。为此,各PLC的生产厂商在硬件和软件方面采取了多种措施,使PLC除了本身具有较强的自诊断能力,能及时给出出错信息,停止运行等待修复外,还使PLC具有了很强的抗干扰能力。 •硬件措施:主要模块均采用大规模或超大规模集成电路,大量开关动作由无触点的电子存储器完成,I/O系统设计有完善的通道保护和信号调理电路。 ① 屏蔽:对电源变压器、CPU、编程器等主要部件,采用导电、导磁良好的材料进行屏蔽,以防外界干扰。 ② 滤波:对供电系统及输入线路采用多种形式的滤波,如LC或π型滤波网络,以消除或抑制高频干扰,也削弱了各种模块之间的相互影响。 ③ 电源调整与保护:对微处理器这个核心部件所需的+5V电源,采用多级滤波,并用集成电压调整器进行调整,以适应交流电网的波动和过电压、欠电压的影响。 ④ 隔离:在微处理器与I/O电路之间,采用光电隔离措施,有效地隔离I/O接口与CPU之间电的联系,减少故障和误动作;各I/O口之间亦彼此隔离。 ⑤ 采用模块式结构:这种结构有助于在故障情况下短时修复。一旦查出某一模块出现故障,能迅速更换,使系统恢复正常工作;同时也有助于加快查找故障原因。 软件措施:有极强的自检及保护功能。 ①故障检测:软件定期地检测外界环境,如掉电、欠电压、锂电池电压过低及强干扰信号等。以便及时进行处理。 ②信息保护与恢复:当偶发性故障条件出现时,不破坏PLC内部的信息。一旦故障条件消失,就可恢复正常,继续原来的程序工作。所以,PLC在检测到故障条件时,立即把现状态存入存储器,软件配合对存储器进行封闭,禁止对存储器的任何操作,以防存储信息被冲掉。 ③设置警戒时钟WDT(看门狗):如果程序每循环执行时间超过了WDT规定的时间,预示了程序进入死循环,立即报警。 ④加强对程序的检查和校验:一旦程序有错,立即报警,并停止执行。 ⑤对程序及动态数据进行电池后备:停电后,利用后备电池供电,有关状态及信息就不会丢失。 PLC的出厂试验项目中,有一项就是抗干扰试验。它要求能承受幅值为1000V,上升时间1nS,脉冲宽度为1μS的干扰脉冲。一般,平均故障间隔时间可达几十万~上千万小时;制成系统亦可达4~5万小时甚至更长时间。 2 .通用性强,控制程序可变,使用方便 PLC品种齐全的各种硬件装置,可以组成能满足各种要求的控制系统,用户不必自己再设计和制作硬件装置。用户在硬件确定以后,在生产工艺流程改变或生产设备更新的情况下,不必改变PLC的硬设备,只需改编程序就可以满足要求。因此,PLC除应用于单机控制外,在工厂自动化中也被大量采用。 3.功能强,适应面广 现代PLC不仅有逻辑运算、计时、计数、顺序控制等功能,还具有数字和模拟量的输入输出、功率驱动、通信、人机对话、自检、记录显示等功能。既可控制一台生产机械、一条生产线,又可控制一个生产过程。 4.编程简单,容易掌握 目前,大多数PLC仍采用继电控制形式的“梯形图编程方式”。既继承了传统控制线路的清晰直观,又考虑到大多数工厂企业电气技术人员的读图习惯及编程水平,所以非常容易接受和掌握。梯形图语言的编程元件的符号和表达方式与继电器控制电路原理图相当接近。通过阅读PLC的用户手册或短期培训,电气技术人员和技术工很快就能学会用梯形图编制控制程序。同时还提供了功能图、语句表等编程语言。 5.减少了控制系统的设计及施工的工作量 由于PLC采用了软件来取代继电器控制系统中大量的中间继电器、时间继电器、计数器等器件,控制柜的设计安装接线工作量大为减少。同时,PLC的用户程序可以在实验室模拟调试,更减少了现场的调试工作量。并且,由于PLC的低故障率及很强的监视功能,模块化等等,使维修也极为方便。 6.体积小、重量轻、功耗低、维护方便 PLC是将微电子技术应用于工业设备的产品,其结构紧凑,坚固,体积小,重量轻,功耗低。并且由于PLC的强抗干扰能力,易于装入设备内部,是实现机电一体化的理想控制设备。 第二、台达PLC概述 台达PLC,是台达Programmable Logic Controller的缩写,又名台达可编程、台达可编程控制器、台达可编程序控制等,是台达为工业自动化领域专门设计的、实现数字运算操作的电子装置。 台达ES系列PLC具有如下特点: 1、大I/O点数:256点 2、程序容量:4K Steps 3、通讯端口:内置RS-232与RS-485,兼容MODBUS ASCII / RTU通讯协议。 4、内置四点高速计数器:
第三、台达PLC在扶梯中的使用 台达ES系列PLC的性能稳定,本身含有的功能完全满足在扶梯控制系统中的应用。 1、高速计数器的应用。 台达PLC DVP-60ES有4个单独的32位高速计数器,这为扶梯的高速计数控制做好了准备。扶梯的高速计数主要有2个方面,一个是主机测速,另一个是扶手带测速。主机测速有专门的测速器,扶手带测速则可以通过2个高速计数器测量扶手带的速度,用2个高速计数器扑捉扶梯梯路运行的速度。这2对高速计数器形成了2路扶手带的测量,彼此独立,互不干涉,资源充足。见如下控制流程图:
2、 顺序控制的应用 扶梯的控制主要包含5个方面:开机前安全检查、正常运行、运行中安全检查、停机、停机的安全检测。见如下控制流程图:
此PLC有着非常丰富的控制资源,744点一般辅助继电器,256点停电保持继电器、64点100ms定时器、63点10ms定时器、112点一般计数器等。这些资源组合起来足够细致的对扶梯控制内部的每个继电器进行安全检查,包括PLC自身的继电器的安全检测。 在扶梯的控制中,开机前的安全检测重要,台达PLC能够很好的完成这一任务。主要有: 1)开机前的安全回路检测。外围安全回路的检测完好是扶梯运行的基础。外围安全回路断开,则停止一切与主机运行的输出。 2)给定一定的时间对PLC自身检测,在这段时间中,PLC给每个输出点0.5s时间检测各个外围继电器是否动作完好、是否粘连、每个输出继电器是否工作完好。将PLC各个输出点分组击活,检测后进入下一组。终到达设定的时间。 3)检测完毕,进入扶梯运转阶段。 3、通信的应用 随着扶梯应用的范围越来越广泛,自动化水平的提高,客户对扶梯的监控系统有着越来越高的要求。这些的监控系统可以帮助维护人员非常快的判断出扶梯的具体故障、看到以往的故障,帮助维护人员分析原因使扶梯能够更好的为大家服务。台达PLC的ES在这方面有很丰富的资源。它本身带有1个RS232串口、1个RS485接口。 RS232串口用于下载并监视程序,如果简单的、扶梯数量较少,可以直接使用此端口与上位机连接,监控扶梯的运行状态。不过这种使用机会非常少,因为RS232接口传输距离相对较近,而且是1对1的接口,而扶梯的数量一般都是几个甚至几十个。所以使用成本较高。 RS485接口。台达PLC的ES系列非常方便的是每个PLC都有RS485接口。RS485可以方便的多机通信,而且传输距离较远,理论能够达到1.2km。ES系列PLC通过RS指令,能够方便的实现自由协议的通信,而且可以使用MODWR、MODRD等指令实现MODBUS通信。 在扶梯中,此RS485接口的主要作用是将PLC的运行状态及检测报警等实时的传输给故障诊断板,使客户或者维修人员能够了解扶梯的运行状态,在短的时间内找到停梯原因,及时检修并排除故障,能够更快的恢复扶梯的运行。 4、安全设计 PLC使用于扶梯系统要求安全是位的。这点不仅在外围安全电路的设计上,对PLC自身内部的软件安全同样有严格的要求。在软件设计中,对各个功能块分别检测,例如制动检测、闸瓦厚度的检测、梯级缺少等等。这些功能块的输出继电器组成了软件安全回路,控制外围安全回路的通断。各个功能块之间也不断的交替比较检测,降低了由于单一控制带来的风险。安全回路输出继电器检测一旦检测发生故障,不仅软件上使扶梯停下来,切断主机的电源,而且从外围安全回路切断主机的电源。软硬件结合的双重控制,增强了安全等级,提高了控制的可靠性。 |
一、脱硫PLC系统的配置情况
王滩电厂脱硫PLC控制系统采用树形网络,设置两层控制网络:上层网为辅助车间集中监控网,下层网为脱硫的车间级控制主干网。全厂辅控网设有4个操作员站、1个历史站、1个工程师站及2台相互冗余、相互热备的服务器、冗余的交换机;车间级控制主干网采用100M冗余光纤以太网,分别设有3台操作员站、1台工程师站、1台历史站及冗余的交换机,配有#1FGD、#2FGD、#1-2FG、#1-4FGD 四套PLC控制系统,配有中央处理单元(CPU)140CPU53414A四套(共8块) 、双机热备模块140CHS11000四套(共8块),冗余的通讯模件140N0E77101四套(共8块),输入输出模件,专用连接电缆及连接件和实时操作系统等。PLC系统编程软件为Concept2.6,监控软件为Ifix3.5无限点中文开发版。脱硫PLC控制系统通过1000M冗余光纤以太网交换机与全厂辅控网进行通讯,通讯协议TCP/IP,通过通讯接口,脱硫系统的监控纳入全厂辅控网,由单元机组集中控制室内的辅助监控站的运行人员完成两台炉脱硫系统的监控和管理。操作员站和控制站之间的通讯网络为双冗余工业以太网,冗余交换机,通讯协议TCP/IP。I/O站之间的通讯网络采用冗余的MODICON RIO网络,即远程I/O网络。现场系统结构示意图1。
二、脱硫网通讯中断原因分析
辅控网上有两台服务器直接从所有的PLC中采集数据,在脱硫系统中现场有五台上位机从PLC中采集数据。上位机SCADA软件采用的是IFix3.5。#1FGD、#2FGD、#1-2FGD、#1-4FGD为Quantum的双机热备系统,整个脱硫系统用德国Hirschmann交换机为双网配置。
各站的内存数据分配及上位机数据请求如下表1:
上位机通讯的性能与CPU的扫描时间、数据请求量及上位机的结构有较大的关系,从上述的表中我们可以得到除了#1-2FGD以外其他站的程序量是比较大的,单机的扫描时间都在50ms以上。另外从3:X类型的数据上看,除#1-2FGD以外其他站的数据量都在50000个字以上。这些因素导致PLC在建立双机热备之后所需要的扫描周期在200ms左右,因为每个周期为保证数据的主备机同步,这些数据都需要从主机传到备机。现场检测#1FGD在建立双机热备后实际的扫描周期在196ms左右,比单机时扩大了近3倍,从而使得对上位机的响应很慢。另外脱硫系统中有共计有7台上位机直接从PLC中采集数据,也会导致上位机响应较慢。当出现通讯超时的情况时,SCADA会表现出通讯中断的现象,但此时PLC对于过程控制的处理是正常运行的。要提高数据的响应速度可以从上述的几个方面进行分析。
三、改进的可行性方案
3.1 减少直接读取PLC的上位机数量
根据实际操作的需要保留适当数量的上位机,平时不用的站将其IFix3.5关闭可以改善通讯性能。或采用客户机/服务器方式,保留两台主机服务器从PLC采集数据,其他操作员站从服务器得到数据。
3.2 合理配置上位机数据请求以减少数据请求量
在IFix中对离散量数据一个请求可以采集2000个点,对字类型数据可以采集125个字。在配置I/O数据请求时尽可能将需要采集的数据放置在同一个请求中采集以减少数据请求数量,如#1FGD、#2FGD、#1-4FGD的0:X类型的数据作优化可都可以减少一个请求。对于7台上位机来说就可以减少7个请求。但此种变动可能需要对程序作少量修改。另外现场系统采用的双网络结构,可以分配上位机从不同的NOE模块中采集数据。如辅控网从一个NOE采集数据,就地控制从另外一个NOE采集数据,这样可以有提高SCADA的响应性能。
3.3 优化程序减小双机热备时的扫描周期
现场的程序量较大,会导致双机热备时所需的热备字数量较大,从而使得双机热备时扫描周期大大增加。可以优化程序如减少非定位变量的应用,减少DFB在双机热备系统中的应用可以减少热备字数量,但此种修改工作量较大。
3.4 采用的新Unity Quantum双机热备CPU模块
以上的几种方法可以适当地改善目前的通讯性能,但若需要大幅度的提高通讯性能则采用Unity Quantum CPU。主要原因有两个:新的CPU其程序计算速度及双机热备时数据传输速度大大提高,从而使得PLC的扫描周期非常短。 Unity下的以太网通讯响应请求能力相比于Concept 下的Quantum双机热备提高了2到4倍。将#1FGD的程序转换到Unity程序后,根据测试的结果其扫描周期在双机热备的情况下可减小到40ms左右。在不变更目前上位机配置下,理论计算可以有30台上位机同时连接也能满足性能要求。 将Concept程序转换到Unity Pro的程序是比较方便的,程序结构与Concept类似只需作少量的检查工作。Unity Pro操作界面略有不同,但在Concept的基础上是很容易学习撑握的。系统的硬件及接线除更换CPU和CHS模块外无需作任何其他的改动。因此,我们选择了对原控制系统CPU控制器的升级达到减小扫描周期的目的。
四、CPU升级及注意事项
4.1 CPU升级
根据以上的分析,终确定采用方案4,将原系统中型号为140CPU53414的CPU更换为140CPU67160(要求内存为7M),通过Ethernet MTRJ-MTRJ光纤电缆将热备的两个CPU相互连接。并且为新更换的CPU增加可扩展的Unity v2 PCMCIA存储卡(SRAM),型号为TSXMRPC007M,使该控制系统达到可靠的冗余热备。只需在Unity编程软件中对新更换的CPU以及槽号进行配置即可。升级后的PLC控制系统#1FGD、#2FGD、#1-2FG、#1-4FGD的扫描周期仅为34ms、37ms、19ms、40ms,彻底解决了双机热备时通讯中断的问题。
4.2 CPU升级的注意事项
4.2.1 工艺系统安全停运
CPU升级过程中,工艺系统的运行状态将无法监视和控制,整个升级过程少则需要一两个小时,多则可能长达十几个小时,好选择在机组停运的时候,如不能则一定要做好相应设备的安全措施,无法停运的设备切换到就地运行,如搅拌机和润滑油泵等。
4.2.2 CPU型号与NOE版本匹配
需要特别强调的是CPU的型号一定要和NOE的版本匹配,否则将无法将程序下载到CPU中。在升级过程中,程序通过MAC地址能连接到CPU,但是通过以太网和USB接口无法将程序下装,因为本次升级是在原来concept2.6的基础上进行的,且NOE模块为2005年采购安装并使用的,显然NOE版本和CPU的型号不一致。在升级前一定要在Unity Pro XL程序下,用OSLOADER功能采用相应的升级文件将NOE模块升级到Unity下匹配的版本,当系统名称、系统硬件编号和错作系统版本显示无误后才可完成程序下装。
4.2.3 IP地址的配置
Unity Pro XL在用以太网方式连接时,首先将NOE模块上写的4组十六进制的数字换算成10进制的4组IP地址,再将本机的IP地址改成同一网段的地址即可。有时候连接不上的话,可以试着配置在以太网模块上的IP的后一位加1,因为加1是带双机热备的IP地址,系统自动加了1。
方案实施后取得了较为明显的效果,实现了脱硫系统的CPU双机热备运行,且不再出现通讯中断的现象。为机组的稳定运行奠定坚实的基础,全面提高了全厂辅控系统的整体控制水平,为机组安全、稳定、经济运行奠定了坚实的基础。