西门子6ES7231-7PC22-0XA0产品型号
西门子6ES7231-7PC22-0XA0产品型号
自动扶梯和电梯一样是公共场所运送乘客的典型设备,已在百货公司,机场、地铁、火车站等场所广泛的应用。而对于扶梯的拖动一般都采用三相异步电动机,而对于拖动的控制也普遍采用传统的继电器控制方式,由于扶梯的自动化及安全性能逐渐的提高,而它的控制还采用传统的继电器控制已不能满足高性能的要求。再加上继电器控制方式固有的缺点,控制烦琐、布线杂多、占用空间大、故障率高、不易检修等缺点。而现在电子逻辑器件,大规模集成电路的出现;诸如像单片机、PLC 在控制系统上的应用也越来越多。在自动扶梯中有些厂家也采用PLC 做为控制核心。
PLC 有应用的局限性,比如说输入输出对电压的要求,价格高等,所以在自动扶梯的控制上采用PLC 并不是理想的,对此我公司就想找一个具有逻辑控制功能,可现场编程,有输入输出功能的单元来实现我自动扶梯系统的核心控制。我发现西门子LOGO 正符合我公司的要求,能满足系统的控制要求,价格还低,故我公司在设计生产自动扶梯控制柜中采用西门子LOGO 为控制核心。
系统要求:
扶梯采用11KW 三相异步电动机拖动,扶梯要求能上行,也可下行(可切换),需要安全急停功能,需要检修功能,需要照明灯。控制柜体积的要求。
控制系统构成:
电动机降压启动电路,电动机正反转电路,安全急停电路,检修电路,照明电路。
如果要完成上述功能还要求控制柜的控制性能、体积、价格。显然采用继电器控制和PLC 控制都不是理想的,采用西门子LOGO 是理想的控制单元。
电气系统描述:
(一)硬件电路部分
在此选择西门子LOGO!RC230 主模块加扩展模块LOGO!DM8230 R,RC230 是8 输入4 输出,扩展模块为4 入4 出(输入为数字量,输出为继电器方式)。
LOGO 是一种具有可编程的逻辑模块。在控制系统中起到逻辑控制且可输入输出的功能。
系统硬件组成:平行按扭、转换开关、急停按扭、交流接触器、热继电器、LOGO(RC230)+LOGO!扩展模块、继电器、变压器、断路器等组成。
与LOGO 的接线:LOGO RC230 的电源电压115---240V/AC/DC。它可以直接输入交流220V 电压做为输入信号。主单元的输入端子为I1-I8,扩展为I1-I4。输出端子为Q1-Q4,扩展为Q1-Q4,在此自动扶梯控制系统中只用了输入I1-I5(与按扭接点连接),输出Q1-Q4,扩展Q1-Q3(与接触器线圈连接)。扩展模块与主模块的连接用模块自带的插针接口连接即可,下为与LOGO 的接线图。
图1
图1 中各元件表示:
LOGO!RC230:西门子通用逻辑模块
LOGO!DM8230 R:西门子通用逻辑模块扩展模块
SB1:上行按扭
SB2:下行按扭
SA:检修转换开关
SB3:急停按扭
SP:急停继电器触点
K1.1:电动机星型启动接触器
K1.2:电动机角运行接触器
K2.2:电动机正转接触器
K2.1:电动机反转接触器
K10:运行接触器
MD:抱闸继电器
K25:照明继电器
(二)、软件部分:
在设计扶梯控制程序之前,首先要确定电路的输入量和输出量(见图1)。根据输入输出断子安排和系统的工作流程编写程序。
西门子LOGO 编写程序简单方便,可以用PC 机专用的LOGO 编程软件编程下载,也可在现场用LOGO 一体的操作面板(带按键和液晶显示)输入。我公司采用现场手动输入的方法实现LOGO 的编程。LOGO 的编程语句是用功能块和逻辑图来表达的。即我们在数学上学的“或”“与”“非”等逻辑符号来表达实际的电路逻辑关系,对于具体的编写操作方法请参见西门子LOGO 手册。
我现将自动扶梯程序流程图表示如下:
备注:图2 中的粗线粗字表示当在I3 输入有效时的输出流程
功能描述:
当按下SB1 按钮上行(I1 信号有效),输出主Q2、主Q4、扩展Q1、扩展Q2、扩展Q3、延时2.5 秒后输出主Q1。即当按下上行按钮SB1 时, 电动机星型启动接触器K1.1、上行接触器K2.2、正常运行接触器K10、制动继电器MD、照明继电器K25 吸合,延时2.5秒后电动机角运行接触器吸合(星启动接触器断开)。这一过程是电动机的星三角启动,打开扶梯照明,打开制动器,使之上行的过程。当按下SA 急停按钮时,以上输出除扩展Q3(照明继电器)外其他全部停止输出。由于扶梯停止后还须照明,而不能立即停止,故扶梯停止后延时25 秒后自动停止扶梯照明。
当按下SB2 按钮下行(I2 信号有效)时输出主Q3,连锁停止Q4,其它与上相同。(主Q3 与Q4 和主Q1 与Q2 的输出是互锁的)
当按下SA 检修按钮时,扶梯进入检修状态,按下SB1 或SB2 按钮,扶梯只能运行在星启动模式下(主Q3 或Q4 输出),不能进入正常电动机角运行模式(主Q1 不能输出)。其他同上。
当扶梯在任何运行状态,LOGO I4 或I5 信号输入有效时,停止一切输出,K25(扩展Q3)延时25 秒后停止输出。
总结:
西门子的逻辑模块LOGO 在自动扶梯控制上的应用是非常成功的!在应用的过程中我总结出如下几点:
LOGO!
LOGO!是什么?
西门子公司推出的通用逻辑控制模块,具有灵活和低成本的特点,是您佳的选择。
体积相对小
性能价格比高
编程方便(适用于控制不是很复杂的场合)
、 引言
由于国内半导体行业起步较晚,现国内半导体二极管的封装设备还停留在90年代水平,而国内的设备生产商主要是从原国企独立出来小公司,其技术水平还依赖于在原国企的陈旧技术,且规模及研发力量远远落后于半导体封装的快速发展。我公司是在目前的形势下进入大陆的台资企业。在台湾,我们主要以服务于半导体行业的加热设备,且有三十余年历史,其成熟的技术和强大的技术开发力量,为台湾的半导体行业的发展建立不朽的功勋。
由公司刚刚研制的二极管真空封合炉,不仅在技术上打破国内生产企业的常规,并把PLC和HMI次应用到该设备,直接在人机界面上操作和改变PLC的程序及封合炉运行参数,达到灵活控制设备运行的目的。并同时控制4只炉管工作,大大提高现场应用的自动化水平。
2、系统主要组成结构
(1)真空封装炉管8只。其作用对原材料在高温时封装。
(2)加热器4只。8只炉管共用4只加热器,需要两个台车运行调整位置。该加热器根据生产工艺要求提供高1300℃的温度。
(3)温度控制器。该产品选用日本理化公司的多程式控制器P300作为三温区的主控制,其控温精度可达0.1%,且多可提供256步的程式。F900为副温度控制。
(4)PLC采用OMRON公司CQM1系列,其程序容量可达7k,在该设备的功能:执行HMI指令,控制氮气阀、真空阀、水阀、真空泵的运转,并及时接三来自压力变送器的信号。并检测设备运行中的异常状况。
(5)HMI采用国内先进的Pro-face GP2501 10.4”单色触摸屏,其主要功能控制设备的运行、停止、手动加氮气、手动排气等。并显示设备运行中的参数、运行曲线、报警信息等。
(6)真空系统。
(7)制冷系统。
3、温度运行工艺曲线
从运行曲线我们不难看出,PLC运行的大部分是步进指令,并同时控制4只炉管抽真空和加氮气、排泄氮气来使炉管达到工艺要求的真空度,然后再启动温度控制器,通过设定好的时间/温度曲线控制加热器的运行,整个温度的运行通过PID参数控制,其控温效果完全可以达到本工艺的要求。
4、HMI控制的主画面
HMI在本案中完美地实现了控制与显示的结合。通过显示,操作者可以明显看到此时台车运行状态,炉管的真空度,加热器的运行状态,极大方便操作者,省去了众多复杂的按键,更增加了控制盘的简洁控制,使使用者能够很快熟练操作生产控制程序。同时能够在设备异常时显示出故障处及应急解决办法,也为设备维护人员提供尽快地解决方案。
5、结束语
该设备的成功研制,克服了用户在使用中所遇到的种种困难,极大地提高产品生产量,显著提高了生产效率,使操作变得更直观,更富有人性化。
在连铸生产中,连铸坯要在定尺系统的控制下由切割设备切割成一定长度的成材铸坯。因此,定尺的准确与否,将直接影响连铸的成材率,进而影响连铸的经济效益。一个jingque而稳定的定尺系统,不仅可以极大地提高连铸坯的定尺合格率,还可以使生产顺利进行,极大地减轻切割工人的劳动强度。
1 炼钢厂5#连铸定尺系统
炼钢厂5#连铸机是一台六机六流的小方坯连铸机, 采用火焰切割系统以及红外线无接触定尺系统。红外线无接触定尺系统是通过摄像机摄取铸坯图像, 由计算机来分析图像, 从而实现连铸坯的定尺测量。这种定尺系统的优点是切割系统与连铸系统基本上是分离的, 定尺不受生产设备状况的影响, 可以有效地避免由于拉矫系统打滑、堵转等造成的长短尺。它的主要缺点就是受外界的干扰较大。由于计算机系统是根据铸坯的亮度来确定铸坯位置的, 所以外界的光线(例如电焊、强烈阳光尤其是切割火焰) 对系统的影响较大, 很容易造成系统误动作。由于5#连铸机有6 个铸流, 采用火焰切割机, 因此在生产定尺为216 m的铸坯时,切割火焰对红外定尺系统的影响非常大, 经常造成系统误动作而产生短尺铸坯, 对生产的影响较大。
2 PLC定尺系统
211 PLC定尺系统的原理
由于5#连铸机的定尺系统非常不稳定, 给连铸生产带了不良影响, 为了解决5#连铸机定尺问题, 开发了PLC定尺系统, 很好地解决了5#连铸机的定尺问题。图1是5#连铸机拉矫机以及火焰切割机的系统简图。
5#连铸机的拉矫系统是通过变频器实现拉速调整的。在计算机上可以得到拉矫机变频器的实际输出频率f, 因此, 电机的转速:
n = 60f (1 - s) / p = kf
其中:
n: 电机转速
s: 电机的转差率, 为一常数
p: 电机极对数, 为一常数
k: 常数
由于电机的转速与电源频率有着严格的对应关系, 因此可以计算出铸坯的实际运行速度:
v = k1 ×n ×3114 ×D (m /min)
其中:
k1 : 减速机的速比
D: 拉矫辊的周长, 单位: m
V: 铸坯运行速度
根据以上数据, 在PLC程序中对时间求拉速的定积分, 就可以得到铸坯的长度:
L = t2/t1 vdt
212 系统修正
21211 PLC修正
在PLC系统中通过数学计算得到铸坯在任一段时间内的长度L, 但是, 在实际应用中, 由于电机转差率以及减速机速比的离散性, 实际定尺长度Lsj与L还是有一定差距的, 因此在编制PLC程序时需要对定尺系统行修正, 即:
Lsj = K2L
其中:
Lsj : 铸坯实际长度;
L : 铸坯理论长度;
K2 : 修正系数。
对于其中的修正系数K2 的取值是整个系统能否正常工作的关键。由于K2 = Lsj / L 因此可以通过实测法在生产现场测出每个铸流的K2 的值, 现场取Lsj = 5 m, 即当铸坯长度为5 m时通过PLC程序的在线功能得到PLC定尺系统的理论长度L 的值, 从而求出K2 的值, 由于5#连铸机定尺的大长度为10 m, 因此取Lsj = 5 m可以保证定尺系统在整个定尺范围内达到一定的精度。
21212 人工修正
由于连铸机实际生产状况比较复杂(如拉矫辊辊径的磨损变化) , 因此还需要人工对整个定尺系统进行修正。对定尺系统的设定和修正是通过计算机画面实现的, 输入的参数有定尺设定值、修正值两个参数。人工修正就是由操作员工根据切割工实测的铸坯长度在修正值输入域内输入一个数值,从而实现修正。
213 实际使用效果
1) 定尺精度高, 可以控制在±30 mm 之内,大大提高了连铸坯成材率;
2) 可以灵活方便地修改定尺长度, 减轻了工人的劳动强度;
3) 没有增加外部设备和投资, 不仅节约了设备投资, 还真正实现免维护, 极大地降低了维修人员的劳动强度;
4) 可靠性高, 即使出现铸坯割不断的情况,也能保证定尺的准确性, 这是红外定尺系统无法做到的。
3 结语
PLC定尺系统在炼钢厂5#连铸机上的应用取得了良好的效果, 不仅有效提高了铸坯成材率, 而且降低了设备故障率, 保证了设备的稳定顺行。