西门子6ES7223-1PL22-0XA8产品型号
西门子6ES7223-1PL22-0XA8产品型号
一、 系统概述
艾默生PLC和变频器在浆纱机上的应用,此电气系统采用PLC集中管理,分散控制,系统集中化,简约化,易控性强,更好的降低故障率。
方案配置如下:
PLC系统由艾默生EC202416BAR主模块,16点的数字量输入模块和4路模拟量输出模块组成。
操作界面采用工业级液晶触摸屏,可动态修改控制参数,方便显示当前速度,当前匹长、 匹数及系统的动态运行状态。
边轴电机变频器采用高性能通用型的EV2000系列,织轴收卷TD3300 22KW张力变频器。此变频器是张力专用变频器,内置张力控制功能。采用独立变频模式,结构简单,维护方便,稳定度高,保证收卷的张力及线速度,在小卷到大卷的变化过程中稳定可靠。在加减速中的自动补偿控制,使加减速中张力更稳,更有上卷防断纱程序,使上卷起机时便于操作。
本系统的优点:
·张力设定在人机上设定,人性化的操作;
·使用先进的控制算法:卷径的递归运算;空心卷径激活时张力的线性递加;张力锥度计算公式的应用;转矩补偿的动态调整等等;
·卷径的实时计算,jingque度非常高,保证收卷电机输出转矩的平滑性能好。并且在计算卷径时加入了卷径的递归运算,在操作失误的时候,能自己纠正卷径到正确的数值;
·因为收卷装置的转动惯量是很大的,卷径由小变大时。如果操作人员进行加速、减速、停车、再激活时很容易造成爆纱和松纱的现象,将直接导致纱的质量。而进行了变频收卷的改造后,在上述各种情况下,收卷都很稳定,张力始终恒定。而且经过PLC的处理,在特定的动态过程,加入一些动态的调整措施,使得收卷的性能更好;
·在传统机械传动收卷的基础上改造成变频收卷,非常简便而且造价低,基本上不需对原有机械进行改造。改造周期短,基本上两三天就能安装调试完成;
·克服了机械收卷对机械磨损的弊端,延长机械的使用寿命。方便维护设备。
·机台上的所有操作部分全部采用36V以下的安全电,以保证操作中的使用安全。
二、 系统框图
三、 张力控制原理
所谓的张力控制,通俗点讲就是要能控制电机输出多大的力,即输出多少牛顿。反应到电机轴即能控制电机的输出转矩。真正的张力控制不同于靠前后两个动力点的速度差形成张力的系统,靠速度差来调节张力的实质是对张力的PID控制,要加张力传感器。而且在大小卷启动、停止、加速、减速、停车时的调节不可能做到像真正的张力控制的效果,张力不是很稳定。肯定会影响产品的质量。
变频收卷的实质是要完成张力控制,即能控制电机的运行电流,因为三相异步电机的输出转矩T=CmφmIa,与电流成正比。并且当负载有突变时能够保证电机的机械特性曲线比较硬。所以必须用矢量变频器,而且必须要加编码器闭环控制。用变频器做恒张力控制的实质是死循环矢量控制,即加编码器反馈。收卷的卷经是由小到大变化的,为了保证恒张力,所以要求电机的输出转距要由小到大变化。同时在不同的操作过程,要进行相应的转距补偿。即小卷启动的瞬间,加速,减速,停车,大卷启动时,要在不同卷经时进行不同的转距补偿,这样就能使得收卷的整个过程很稳定,避免小卷时张力过大;大卷启动时松纱的现象。
·卷径的计算原理
根据V1=V2来计算收卷的卷径。因为V1=ω1×R1, V2=ω2×Rx。因为在相同的时间内由测长辊走过的纱的长度与收卷收到的纱的长度是相等的。即L1/Δt=L2/Δt,Δn1×C1=Δn2×C2/i
(Δn1---单位时间内牵引电机运行的圈数、Δn2---单位时间内收卷电机运行的圈数、C1---测长辊的周长、C2---收卷盘头的周长、i---减速比)
Δn1×π×D1=Δn2×π×D2/i
D2=Δn1×D1×i/Δn2,因为Δn2=ΔP2/P2
(ΔP2---收卷编码器产生的脉冲数、P2---收卷编码器的圈数)。Δn1=ΔP1/P1取Δn1=1,即测长辊转一圈,由编码器接到PLC。那么D2=D1×i×P2/ΔP2,这样收卷盘头的卷径就得到了
·收卷的动态过程分析
要能保证收卷过程的平稳性,不论是大卷、小卷、加速、减速、激活、停车都能保证张力的恒定。需要进行转矩的补偿。整个系统要激活起来,首先要克服静摩擦力所产生的转矩,简称静摩擦转矩,静摩擦转矩只在激活的瞬间起作用;正常运行时要克服滑动摩擦力产生地滑动摩擦转矩,滑动摩擦转矩在运行当中一直都存在,并且在低速、高速时的大小是不一样的。需要进行不同大小的补偿,系统在加速、减速、停车时为克服系统的惯量,也要进行相应的转矩补偿,补偿的量与运行的速度也有相应的比例关系。在不同车速的时候,补偿的系数是不同的。即加速转矩、减速转矩、停车转矩、激活转矩;克服了这些因素,还要克服负载转矩,通过计算出的实时卷径除以2再乘以设定的张力大小,经过减速比折算到电机轴。这样就分析出了收卷整个过程的转矩补偿的过程。
总结:电机的输出转矩=静摩擦转矩(激活瞬间)+滑动摩擦转矩+负载转矩。
·转矩的补偿标准
1) 静摩擦转矩的补偿
因为静摩擦转矩只在激活的瞬间存在,在系统激活后就消失了。因此静摩擦转矩的补偿是以计算后电机输出转矩乘以一定的百分比进行补偿。
2) 滑动摩擦转矩的补偿
滑动摩擦转矩的补偿在系统运行的整个过程中都是起作用的。补偿的大小以收卷电机的额定转矩为标准。补偿量的大小与运行的速度有关系。所以在程序中处理时,要分段进行补偿。
3) 加减速、停车转矩的补偿
补偿硬一收卷电机的额定转矩为标准,相应的补偿系数应该比较稳定,变化不大。
·相关的计算公式
四、 调试过程
(1)先对电机进行自整定,将电机的定子电感、定子电阻等参数读入变频器。
(2)将编码器的信号接至变频器,并在变频器上设定编码器的圈数。然后用面板给定频率和启停控制,观察显示的运行频率是否在设定频率的左右波动。因为运用闭环矢量控制时,运行频率总是接近设定频率,所以运行频率是在设定频率的附近波动的。
(3)在程序中设定空芯卷径和大卷径的数值。通过前面卷径计算的公式算出电机尾部所加编码器产生的大脉冲量(P2)和低脉冲量(P2)。通过算出的大脉冲量对收卷电机的速度进行限定,因为变频器用作张力控制时,如果不对高速进行限定,一旦出现断纱等情况,收卷电机会飞车的。低脉冲量是为了避免收卷变频器运行在2Hz以下,因为变频器在2Hz以下运行时,电机的转矩特性很差,会出现抖动的现象。
(4)通过前面分析的整个收卷的动态过程,在不同卷径和不同运行速度的各个阶段,进行一定的转矩补偿。补偿的大小,以电机额定转距的百分比来设定。
五、 参数简表
附表1:TD3300功能参数简表
结束语:技术更新越来越快,我们必须tigao产品性能,使我们的产品能够适应我们的工艺要求。
1 前 言
沥青冷再生搅拌技术是将旧沥青路面材料经过破碎加工后进行重复利用,根据再生后结构层的结构特征适当加入新骨料或细集料,按比例加入一定量的外掺剂(乳化沥青、泡沫沥青等)和适量的水,在自然环境温度下连续添加、拌和,重新形成具有所承载能力结构层的一种工艺方法。该技术充分利用旧路面的废弃材料,解决了废弃材料对空间的占用和对环境造成的污染。国内生产的沥青冷再生搅拌设备控制系统中大都采用的是开环控制的电磁调速电机配料,配料精度低且实时性差,物料浪费严重,生产成本增加。为解决上述缺点,本文提出一种新型的基于数字PID控制的沥青冷再生搅拌设备自动控制系统的设计方案。该方案形成配料系统的闭环控制,硬件投资成本低,符合实际工程设计需要。
2 工艺流程
沥青冷再生搅拌设备主要任务是保证按配料比例及所设定的生产率计算并计量各种骨料、粉料、水以及乳化沥青的重量,然后放料于搅拌缸中进行搅拌,达到设定搅拌时间时,打开拌缸门将成品料输送至成品仓中。其工艺流程如图1所示。
图1 工艺流程图
3 硬件配置及其功能
控制系统由工控机作为上位机、PLC 为下位机以及变频器、信号检测电路、电气控制电路及驱动电路等构成。其结构图如图2所示。
图2 控制系统结构图
3.1 工控机和PLC
为保证可靠性,系统采用研华工控机作为上位机。工控机采用标准配置且内装光电隔离型8 路D/A板卡和I/O适配卡。PLC采用三菱FX2N 系列,通过RS-232接口与上位机通信。
3.2 变频器
变频器用来调节各物料给料电机转速,控制每种物料的liuliang,完成物料的配比。一般变频器具有面板数字控制和端子电压(或电流)控制多种控制方式。本设备配料系统选用三菱FR-A500变频器,其面板数字控制用于调试过程或手动调节,在自动控制工作模式时,采用端子电流控制方式。可选用具有4-20mA 电流输出的D/A转换板,其输出直接与变频器电流控制端子相连。图3为变频器连接图。5号端子为模拟信号公共端,10号端子为频率设定用电源,2号端子为频率设定(电压),4号端子为频率设定(电流),STF端子表示正转启动,AU端子表示电流输入选择,SD表示公共输入端子,R、S、T为三相电源输入端,U、V、W为三相电源输出端,KA1、KA2为继电器。从实际调试过程看,供料电机运行速度变化范围所对应变频器输出频率范围为10-60Hz,调节步长为0.1Hz,满足实际需要。
图3 变频器硬件连接图
3.3 信号检测单元
电机测速传感器采用直流三线型电感式接近开关,其输出的开关信号频率不低于600Hz。由于检测位置离控制室较远,为了tigao系统的抗干扰能力,其开关量信号采用电流环传输形式,并采取光电隔离措施。开关量输入信号在开关量处理板上进行调理后,通过I/O 板与工控机进行联系。乳化沥青的liuliang受密度、温度、压力等因素的影响,并且沥青在管道中有残留,简单地采用罗茨传感器是无法保证测量精度的。因此,在原有罗茨传感器的基础上,首先严格控制乳化沥青输送过程中的温度、压力等参数,将这些干扰减至小,然后利用电磁传感器的优点,将liuliang变为开关量信号,传送给工控机。
4 软件设计
4.1 骨料和粉料liuliang算法
骨料和粉料liuliang算法如下:设皮带恒定转速时,动态皮重为G,称重传感器以动态挂码方式标定后确定的折线函数为g(x),测速传感器标定后得到折线函数为V(x),则物料liuliang公式为:
e(j)=[g(x)-G]·V(x) (1)
故某一段时间从皮带流出的物料累计量:
∫te(t)dt=∫kt[g(t)-G]·V(t)dt (2)
(2)式中k为标定系数,可根据实物称重与工控机显示的累计重量的差异来标定。
4.2 乳化沥青liuliangPID控制算法
根据乳化沥青特点,应采用积分分离的PID 算法对其进行liuliang控制。工控机中离散的PID算法子程序根据给定liuliang值和反馈量计算值的偏差进行运算,求得本次控制值。
乳化沥青liuliang的PID 控制算法为:当︱e(n)∣>∣e(0)∣时,KL=0,进行PD控制,其表达式为:
u(n)=a e(n)-b(n-1) (3)
4.3 骨料、粉料和水的liuliangPID控制算法
调节对象是骨料或粉料的liuliang时,由于调节对象的特点是纯滞后和惯性滞后较小,对象响应灵敏,而且存在着规则或不规则的干扰信号,若采用微分作用,一般会使干扰得以加强。因此,在设置PID时,可以不采用微分作用,只采用积分为主导作用的PI控制。实践表明,这种PI控制方式能有效地消除调节系统的残余偏差。当设定liuliang与实测liuliang不相等时,调节系统输出将继续增加或减少,后使设定值与实测值一致,调节系统的输出便稳定下来。这种PI 控制特性可通过数学分析得到。一般的PI控制输出表达式为:
(6)式表明u(τ)是e(τ)与T的函数。e(τ)为有限变量,其积分值的大小与0到T这段时间的变化有关。当liuliang与实测liuliang偏差为0时,系统就稳定在与设定liuliang相适应的数值上。将(6)式离散化,得到数字控制器的差分方程:
(7)式中T'表示采样周期。
本设备变频调速供水系统是由水泵、电机、变频器等环节组成的时滞系统,涉及参数较多,而水泵工作特性又具有很强的非线性,所以很难给出供水系统jingque的对象数学模型。考虑到设备搅拌过程中用水量大,而骨料的含水率与天气状况直接相关,可利用微波测湿技术通过专门的仪器测量含水率,并根据含水率来改变实际物料配比。因此供水系统也可用积分分离的PID 算法来粗略控制注水量。实践表明,其水liuliang误差是在允许范围内的。
4.4 上位机程序和下位机程序
上位机程序采用VB语言编写,其结构如图4所示。其中,用户界面以动画方式显示监控设备的运行状态,方便地构成监控画面和实现控制功能。用户界面包括运行界面、用户文件、参数设置、标定文件、作业报表、累积报表等。由于客户的配方不同,系统还必须创建配方库,在配方库中可同时建立和保存多种配方,并可在工作状态下编辑配方。上位机串口通信程序采用VB 提供的通信控件MSComm。本系统采用MSCOmm控件提供的事件驱动方式,即按通信协议编写串行通信处理程序,CommEvent属性变化产生OnComm事件时,激活此程序运行,在程序中判断CommEvent的属性值,并做出相应处理,完成与PLC的通信。
图4 上位机程序结构图
下位机程序即PLC程序,系统PLC程序包括一个主程序、设备顺序启动子程序、顺序停止子程序、设备运行程序及通信程序。其中设备运行程序还嵌套了传感器信号处理程序及报警停止程序。PLC通过主程序按要求调用子程序,从而不仅保证下位机jingque控制系统运行,还保证了PLC程序较强的可读性。三菱FX2N 系列PLC具有串行通信功能,本系统中,通信格式用PLC中的特殊数据寄存器D8120来进行设置。通信格式参数设置为:8位数据长度,偶校验,2位停止位,波特率9600bps。因此,D8210=[0000 0100 1000 1111]。现采用RS指令进行数据传输模式进行通信,其通信程序如图5所示。
图5 PLC 串行通信程序
5 结束语
本文提出的沥青冷再生搅拌设备控制系统与原系统相比,tigao了生产效率、配料精度以及产品整体档次,节省了生产成本,保证了设备的稳定性。改进后的搅拌设备已由沪宁高速公路镇江管理处在其施工路段投入使用,应用后检测结果表明,搅拌出的成品料的沥青裹附性良好,且控制系统达到设计要求:骨料集料误差小于3%,水泥石灰稳定剂误差小于1%,供水系统误差小于1%,乳化沥青误差小于0.5%。