西门子模块6ES7211-0BA23-0XB0使用方式
西门子模块6ES7211-0BA23-0XB0使用方式
1 引言
水源热泵空调系统是一种利用自然水源作为冷热源的空调系统,其核心技术是水源热泵技术。所谓水源热泵技术,是利用地球表面浅层水源所吸收的太阳能和地热能而形成的低温低位热能资源,并采用热泵原理,通过少量的高位电能输入,实现低位热能向高位热能转移的一种技术。河水、湖水、地下水等地球表面浅层水源吸收了太阳辐射的能量,水源的温度十分稳定。在夏季,水源热泵空调系统将建筑物中的热量转移到水源中,由于水源温度低,所以可以高效地带走热量。在冬季,水源热泵空调系统从水源中提取能量,根据热泵原理,通过空气或水作为载冷剂tisheng温度后送到建筑物中。通常,水源热泵消耗1kW的能量,用户可以得到4kW以上的热量或冷量。由于水源热泵空调系统具有高效、节能和环保等优点,近年来得到了越来越多的应用[1][2]。
空调系统的控制主要分为继电器控制系统、直接数字式控制器(DDC)系统和可编程序控制器(PLC)系统等级几种。由于故障率高、系统复杂、功耗高等明显的缺点,继电器控制系统已逐渐被淘汰。DDC控制系统虽然在智能化方面有了很大的发展,但由于其本身抗干扰能力差、不易联网、信息集成度不高和分级分步式结构的局限性,从而限制了其应用。相反,PLC控制系统以其运行可靠、使用维护方便、抗干扰能力强、适合新型高速网络结构等显著的优点,在智能建筑中得到了广泛的应用。为了tigao空调系统的经济性、可靠性和可维护性,目前空调系统都倾向于采用先进、实用、可靠的PLC来进行控制[3]。
本文介绍和利时公司HOLLiAS-LEC G3小型一体化PLC在水源热泵空调控制系统中的成功应用,说明了HOLLiAS-LEC G3小型一体化PLC可以很好地实现中央空调智能化控制,达到减少无效能耗、tigao能源利用效率和保护空调设备的目的。
2 空调系统介绍
北京市某单位的办公楼采用水源热泵中央空调系统,总建筑面积8550m2,建筑高度20.5m,其中空调面积约6840m2。地下1层为各种设备房和操作间,地上1层为职工食堂、大厅和会议室,地上2~6层为商业办公用房。
室内温度和相对湿度等技术参数的设计要求如表1所示。水源热泵中央空调系统的设计制冷量为860kW,制热量为950kW。空调的主机系统由四台压缩机组成,水源水系统由取水井、渗水井和水处理设备组成。
表1 室内技术参数的设计要求
3 控制系统硬件设计
该水源热泵中央空调系统主要是根据蒸发器和冷凝器进出水温度的变化来控制4台压缩机的启停,使水温稳定在设定的范围内。4台压缩机分成A和B两组,每组各有2台压缩机。系统的I/O点分配如表2所示,其中开关量输入点6个,模拟量输入点4个,开关量输出点5个,模拟量输出点1个。
表2 系统的I/O点分配表
根据输入和输出的要求,该水源热泵中央空调系统的控制器选用和利时公司具有自主知识产权的HOLLiAS-LEC G3小型一体化PLC。考虑到此系统需要一定的备用I/O点,CPU模块选择带有24点开关量的LM3107,其中开关量输入14点,开关量输出10点。模拟量输入模块选用四通道热电阻输入模块LM3312,模拟量输出模块选用两通道模拟量输出模块LM3320。PLC的人机界面选用EView触摸屏。PLC控制系统及相关设备的组成如图1所示,这些配置完全能够满足系统的要求[4][5]。
图1 PLC控制系统的组成
4 控制系统软件设计
控制系统的主要功能是对热泵进行自动启停,显示温度、压力、liuliang等运行参数,显示压缩机的工作状态,记录设备的运行时间和故障原因,实现对水源热泵中央空调系统的智能控制。从控制系统的主要功能出发,为了增加程序可读性和减少程序代码,PLC程序采用了主程序调用功能块、功能块调用函数的程序结构。PLC程序由1个主程序、11个功能块子程序和1个函数组成,其调用关系如图2所示。程序编译码占用空间为30K。
程序设计的思路是,当PLC上电后,一直进行温度、压力、liuliang等运行参数的检测,这些检测主要在检测程序、故障程序和A/B组故障停机程序中完成。如果相关参数均无异常,则开机功能块子程序运行,启动压缩机。在开机过程中,同时进行温度判断。如果温度达到了设定值,则进入调节功能块子程序,停止开机功能块子程序,完成开机。根据温度的变化,调节功能块子程序控制压缩机的启停。变频器的控制则是通过调用加载程序和降载程序来实现。
在这些程序中,为了满足压缩机的使用要求,调节功能块子程序是繁琐的,例如压缩机的启动时间要小于30秒、压缩机每小时的启动次数不要超过5次等。为了平衡压缩机的运行时间,增加空调的使用寿命,传统的程序设计采用先启先停、先停先启、开机过程中启动次序轮换等控制方法,来协调压缩机的运行时间。但是,如果本系统采用这种方法,则仍然存在某一台压缩机运行时间过长的问题。因此决定对传统方法进行改进,采用随机启停的控制方法代替先启先停、先停先启的控制方法,解决了压缩机的运行时间不平衡的问题。
图2 程序调用关系图
人机界面选用EView触摸屏,首页如图3所示。输入密码后,点击功能菜单,在弹出的快捷窗口中,可以选择参数查询、运行时间、故障查询、运行状态、参数设定、调节显示、操作界面等子菜单,进行相关的操作和显示。
图3 人机界面首页
5 结论
采用传统的继电器控制系统来实现热泵的控制,由于机械接触点很多,接线复杂,参数调整不方便,而且机械接触点的工作频率低,容易损坏,可靠性差。采用直接数字式控制器(DDC)虽然可以减少接线,可靠性有所tigao,但由于DDC其本身的抗干扰能力差、不易联网、信息集成度不高和分级分步式结构的局限性,因此,越来越不能满足复杂多变的智能控制要求。
采用PLC来控制热泵系统,不仅可以通过编程实现复杂的逻辑控制,而且可以在很大程度上简化硬件接线,tigao控制系统可靠性,用户操作界面友好,信息集程度高,便于实现智能控制。因此,在热泵空调领域,PLC控制系统取代DDC控制系统是必然趋势。
1 引 言
切纸机械是印刷和包装行业常用的设备之一。切纸机完成的基本动作是把待裁切的材料送到指定位置,然后进行裁切。其控制的核心是一个单轴定位控制。我公司引进欧洲一家公司的两台切纸设备,其推进定位系统的实现是利用单片机控制,当接收编码器的脉冲信号达到设定值后,单片机系统输出信号,断开进给电机的接触器,同时电磁离合制动器的离合分离,刹车制动推进系统的惯性,从而实现jingque定位。由于设备的单片机控制系统老化,造成定位不准,切纸动作紊乱,不能正常生产。但此控制系统是早期产品,没有合适配件可替换,只能采取改造这一途径。目前国内进行切纸设备进给定位系统改造主要有两种方式,一是利用单片机结合变频器实现,一是利用单片机结合伺服系统实现,不过此两种改造方案成本都在两万元以上。并且单片机系统是由开发公司设计,技术保守,一旦出现故障只能交还原公司维修或更换,维修周期长且成本高,不利于改造后设备的维护和使用。我们结合自己设备的特点提出了新的改造方案,就是用plc的高速计数器功能结合变频器的多段速功能实现定位控制,并利用hmi(人机界面human machine interface)进行裁切参数设定和完成手动操控。
2 改造的可行性分析
现在的大多plc都具有高速计数器功能,不需增加特殊功能单元就可以处理频率高达几十或上百khz的脉冲信号。切纸机对进给系统的精度和响应速度要求不是很高,可以通过对切纸机进给系统相关参数的计算,合理的选用编码器,让脉冲频率即能在plc处理的范围内又可以满足进给的精度要求。在进给过程中,plc对所接收的脉冲数与设定数值进行比较,根据比较结果驱动相应的输出点对变频器进行输出频率的控制,实现接近设定值时进给速度变慢,从而减小系统惯性,达到jingque定位的目的。另外当今变频器技术取得了长足的发展,使电机在低速时的转矩大幅度tisheng,从而也保证了进给定位时低速推进的可行性。
3 主要控制部件的选取
3.1 plc的选取
设备需要的输入输出信号如表1所示。
表1 plc输入输出分配表
针对这些必需的输入点数,选用了fx1s-30mr的plc,因为选用了人机界面,其它一些手动动作,如前进、后退、换刀等都通过人机界面实现,不需占用plc输入点,从而为选用低价位的fx1s系列plc成为可能,因为fx1s系列plc输入点多只有16点。另外此系列plc的高速计数器具有处理频率高达60千赫的脉冲的能力,足可以满足切纸机对精度的要求。
3.2 编码器的选取
编码器的选取要符合两个方面,一是plc接收的高脉冲频率,二是进给的精度。我们选用的是编码器分辨率是500p/r(每转每相输出500个脉冲)的。通过验正可以知道此分辨率可以满足上面两个条件。验证所需的参数:电机高转速是1500转/分(25转/秒)、进给丝杆的导程是10mm/转。验证如下:
本系统脉冲高频率=25转/秒×500个/转×2(a/b两相)=25khz
理论进给分辨率=10mm/500=0.02mm
同时由上面的数据知道进给系统每走1mm编码器发出50(此数据很重要,在plc程序的数据处理中要用到)个脉冲信号。由于此工程中对编码器的a/b相脉冲进行了分别计数,使用了两个高速计数器,且在程序中应用了高速定位指令,则此plc可处理的高脉冲频率为30千赫,因此满足了个条件;我们的切纸机的载切精度要求是0.2mm,可知理论精度完全满足此要求。
3.3 变频器和hmi的选取
这两个部件我们都选用了三菱公司的产品,分别是fr-e540-0.75k-ch和f920got-bbd-k-c。f920got是带按键型的hmi,它的使用和编程非常简单方便。它具有以下特点:(1)可以方便的实现和plc的数据交换;(2)通过本身自带的6个功能按键开关,可以控制plc内部的软继电器,从而可以减少plc输入点的使用;(3)具有两个通讯口,一个rs232c(用于和个人电脑通讯)和一个rs422(用于和plc通讯),利用电脑和f920got相连后不仅可以对hmi进行程序的读取和上传,还可以直接对plc的程序进行上传下载、调整和监控。
4 plc和hmi程序的设计
此工程中程序的难点主要在于数据的处理上。在切纸机工作过程中除手动让进给定位机构前进后退外,还要实现等分裁切功能和指定具体位置定位功能,并且hmi上还要即时显示定位机构的当前位置。我们为了简化程序中的计算,采用了两个高速计数器c235和c236。c236通过计算前进后退的脉冲数,再进行换算后用于显示进给机构的当前位置;c235用于进行jingque定位。定位过程是这样的,每次进给机构需要定位工作时,通过计算把需要的脉冲数送到c235,不论进给机构前进还是后退c235进行减计数,同时对c235中的数值进行比较,根据比较结果驱动相应的输出点对变频器进行输出频率的控制,实现接近设定值时进给速度变慢,从而达到jingque定位。因为任何系统都有惯性和时间上的迟滞,所以变频器停止输出的时间并不是c235中的计数值减小到0时,而是让c235和一个数据寄存器d130比较,当c235中的值减小到d130中的设定值时plc控制变频器停止输出。d130的值可通过人机界面进行修改和设定,在调试时通过修改这个值,以达到定位准确的目的。
1)显示定位机构当前位置的程序
2)实现定位控制的程序段
3)参数设定时的小数点位问题。实际工作中在设定位置时要jingque到0.1mm。这个问题在一些单片机系统中常会遇到,常见的处理办法是加大一个数量级,就是设定数据时,在人机界面上用1代替0.1mm,10代替1mm。不过我们在处理此问题时通过hmi中对数据的设置和plc的程序编写达到了所见即所得的效果。hmi中主要是对数值的格式要设定好。hmi中的设置画面如图1所示。例如等分裁切10.5mm的纸,就可以在hmi上设定为10.5,而不是像公司的类似其它设备上要设为105,但plc的寄存器d128的内容是105而不是10.5,这样在计算需要的脉冲数时就要用下面一条命令:mul d128 k5 d10(此命令中尽管编程时d11不出现但实际上寄存器d11被占用,不能再应用于其它地方,否则会出现问题。)
而不是用:mul d128 k50 d10。
4)编程中其它应注意的问题
● 双线圈问题。本工程中利用条件跳转和步进指令避免了双线圈问题。
● 误差信号问题。编码器是一种比较精密的光电产品,受振动时不可避免的会出现误差信号,而切纸机在执行裁切动作时会造成很大振动,如果忽视这个现象,定位精度和执行机构当前位置的显示都会不准确。本工程中处理方法参见上面例子程序图1,只有y3、y4接通,即只有进给机构前进和后退时才让c236进行计数,这样就屏蔽了裁切时震动造成的误信号。
5 变频器的参数设置
设定的变频器的主要参数见表2。在调试过程中为了达到定位速度和精度的完美结合,应对三段速设定值,加减速时间和hmi中d130、d200和d202的数值进行相应调整。
表2 变频器主要参数设置一览表
6 结束语
通过改造过程,完全恢复了我们切纸机的功能,试用三个月以来运行非常稳定。由这个应用实例可以看出结合plc的高速计数器功能,合理的进行应用,在一定场合可以取代高成本的定位控制系统,实现控制系统优的性价比,并且由于选用通用开放的plc—变频器集成方案,为企业后期自主设备管理带来长远的效益。