西门子6ES7214-1BD23-0XB8型号大全
西门子6ES7214-1BD23-0XB8型号大全
系统介绍
远洋船舶设备由主机系统、净油机系统、油柜系统、空压机系统、舵机系统、锅炉系统、废油焚化炉、发电机组、应急发电机系统以及泵等设备子系统组成,每一个设备都是24小时不间断运行,例如主机,主机系统是船舶的心脏,必须保证主机在航行期间可靠、稳定运行。在此期间,监测系统要求时刻监测主机系统的转速、冷却水温度、燃油进出口温度、滑油进出口温度以及主机排气温度等,这些参数涉及到4-20mA、600℃以上的温度信号和600℃以下的温度信号,信号种类繁多,增加了系统的复杂度。其系统组成框架如图1所示。
图1 机舱监测报警系统组成
各种类型的传感器(开关量、4-20mA、PT100、热电阻等)采集各类信号,并不停地将这些信号送入显示单元(微机LCD),在显示屏上显示各个监测通道的当前值;一旦有监测发生越限情况,报警信号就被送入延伸报警控制单元、打印记录单元及警报器控制单元,其中打印记录单元可以即时打印发生报警的各参数值;警报器控制单元启动集控室和机舱的扬声器,以此提示轮机管理人员;同时,起动延伸报警装置,并在公共场所、轮机长房间、值班轮机员房间等输出声光报警信号;在驾驶台的报警监视屏上也有声光提示信号输出。
主电源和应急电源都具有自检功能;在系统发生报警后,可以在集控室应答,消声消闪。
3 硬件实现
该套监视系统包括对一台14缸的主机、三台发电机、一台锅炉、一套焚烧炉、两套空压机和一套舵机的主要工况参数显示和参数检测报警、及其它设备的运行状态指示。系统共检测118个模拟量,128个开关量。为此采用了S7-200CN PLC 226作为系统总控制器,并扩展7个16I/O的EM223 CN数字量模块,模拟量采集模块采用研华ADAM与PLC通过485总线通;监测上位机采用了研华嵌入式工控机UNO-2160,通过PPI方式组成一个网络,实现对船舶机舱设备的实时监测。其系统架构图,如图2所示。
图2 基于PLC船舶机舱监测系统框架图
本系统在监视与报警工作时,所有开关量模块都通过西门子S7-200CN PLC扩展模块EM223 CN采集输入,三类模拟量4-20mA、600℃以上的温度信号和600℃以下的温度信号通过ADAM采集输入,在通过485总线送入西门子S7-200CN PLC,在PLC中集中处理,然后送到上位机和其他设备,如指示灯,扬声器等。 此外,外部按钮可以发出指令通过西门子S7-200CN PLC发出控制命令,启动、停止各类泵等相应的设备。
作为一个远洋运行船舶必不可少的系统,其主要具备以下功能:
(1) 故障报警:当系统检测到故障时,系统发出声光报警,在应答后,系统停止声音输出,指示灯平光;消除报警后,指示灯灭。
(2) 参数显示与报警的指示:在系统的软件界面上可以查阅当前被监测的参数值,并以不同颜色显示正常与否的参数。
(3) 打印记录:系统接有一个报警记录打印机,当产生报警时,系统同时启动打印机,打印当前的报警,便于轮机管理人员查阅,与航海日志的记录。
(4) 延时报警:当产生温度或液位等报警时,系统延时几秒后,输出报警,便于误报警。
(5) 闭锁报警:该功能用于检修系统时,能够单个检查。
(6) 延伸报警:系统可将报警信息延伸到各个轮机员的房间,将报警信息传送给相关的轮机管理人员。
(7) 失职报警:当发生报警后,一段时间内没有轮机人员去应答,系统就会产生全船报警,以提醒值班人员的失职。
(8) 功能试验:系统具有自检功能。
4 监测系统软件实现
在西门子S7-200CN PLC中实现的控制逻辑流程图,如图3所示。
图3 船舶机舱监测系统控制逻辑流程图
系统监测软件采用以bbbbbbs平台,在组态王的开发环境下实现的。组态王具有可视化操作界面,丰富的图库、高度灵活的动画连接;拥有全面的脚本与图形动画功能可以对画面中的一部分进行保存,以便以后进行分析或打印变量导入导出功能,支持实时、历史数据的分布式保存强大的脚本语言处理,全面支持画面发布、实时数据发布、历史数据发布以及数据库数据的发布方便的配方处理,丰富的设备支持库,支持常见的PLC设备、智能仪表、智能模块的功能特点。
本系统软件具有如下功能:
(1) 参数列表显示,按序或分组显示所有机舱参数条目。包括参数序号、名称、当前值、单位、上限值、下限值以及报警状态。 并可以翻屏连续显示。
(2) 参数图表显示,以虚拟仪表形式显示主/辅机有关参数。关于主机的排气温度、冷却水温度等;关于辅机的有发电机组有关的压力和温度等。
(3) 曲线显示,将有关参数分实时和历史曲线分别描述,其中实时曲线随着时间的推移在界面上描写出一条相应数值的曲线;而历史曲线能让操作员随时可以查看某一参数过去2天内的参数变化情况,即可以复现其2天内的工况。
(4) 报警查询功能是,当某一监测点发生越限报警时,系统自动弹出报警窗口,并能在该窗口中查询到该监测点的相关情况。
(5) 用户管理功能,本系统共设三类用户,分别是系统管理员用户、轮机长用户和操作员用户。其中系统管理员用户是给机务老轨等公司管理级操作使用的,其操作权限为大,可以设置轮机长用户和操作员用户,修改相关参数,如报警上下限;轮机长用户是给船舶老轨操作使用,其操作权限为其次,也可修改相关参数;操作员用户是给船舶一般的值班轮机员使用,其无法修改有关参数和设置用户,权限低。
5 结论
本系统主控制器采用了西门子S7 200CN PLC,其紧凑的结构,良好的扩展性能,强大的指令功能,利用485标准的通信口进行信息传送, 并自行设计相应接口而组成的船舶机舱巡回监测报警系统充分应用了该微型PLC的硬件资源,发挥了其软件优势。输入输出采用差动方式,提高了抗干扰能力,同时,主机和多台终端可以全部并联在一对双绞线上进行多机通讯,节省了传输线,所以本系统小但功能齐全,稳定性好。为用户带来极大的方便;在近两年的实际运行中未出现故障,为船舶的安全、可靠的航运起到了非常重要的作用,同时也为航运公司带来了巨大经济效益。
在内燃机动力装置的船舶上,锅炉是船舶的重要辅机设备,主要产生蒸汽用于加热燃油、主机暖缸、驱动辅助机械及生活杂用。当前船舶机舱自动化的要求越来越高,锅炉的自动控制在实现无人机舱中是必不可少的。但是目前我国船舶(特别在远洋渔船)上,虽有一定程度的自动化控制,但控制系统基本上是采用接触器—继电器系统, 系统线路复杂、可靠性差、维护工作量大。为改造船舶设备,改善船员劳动强度,提高生产效率, 采用可编程序控制器来实现锅炉的自动控制, 可以使线路简单、可靠性提高、维护方便且容易实现现场调试等。可编程序控制器控制系统的经济性能比高于接触器—继电器控制系统。
2 设备与工艺要求
本文主要针对的是船舶辅助燃油锅炉,其蒸发量一般为0.45-2.5t/h,蒸汽压力在0.3-0.7Mpa左右,但只要简单修改PLC程序就可以适用不同型号的船舶锅炉。船舶锅炉自动控制一般有以下几个环节:蒸汽压力自动控制,燃烧程序的自动控制,锅炉水位自动控制,保护与报警。
系统的全自动起动、停炉和故障事件处理,按照要求在PLC中编制用户程序,实现:给水、扫气、点火、燃烧等过程的全自动起、停控制。锅炉定期定时保养维护的自动提示和超期不维护的系统自动闭锁。为配合燃烧,PLC在系统的起停运行中,根据控制要求自动起停风机电机和开闭风门完成扫气工序,并根据燃烧情况,控制风门的开闭大小。此外,风机电机故障、炉内压力超限联锁、燃烧发生故障的联锁控制和报警处理,报警联锁等控制处理等也由PLC用户程序实现。
2.1 水位控制
采用水位计对水位进行检测,根据控制需要将3个水位(下限水位、下下限水位、上限水位)的3个开关量信号接入PLC,经PLC控制水泵电机,实现合适给水量的控制、低水位联锁、报警处理给水水泵电机故障时的联锁控制等,使系统全自动平稳地运行。
2.2 蒸汽压力控制
蒸汽压力通过压力传感器测量实现。水位正常时,如蒸汽压力在0.4-0.46Mpa时锅炉正常燃烧;当负荷减少时,蒸汽压力上升到0.46Mpa时锅炉停止燃烧;如故障蒸汽压力仍上升至0.49Mpa时,切断电源并发出报警;当蒸汽压力下降到0.4Mpa以下时锅炉重新点火燃烧。
采用压力传感器测量当前蒸汽压力,通过压力开关,信号接入PLC的两点开关量输入,或者用压力传感器测量通过变送器将信号接入PLC的一路模拟量输入,实现两级燃烧(大、小火)控制和压力上限保护及实时监视。
2.3 燃烧程序自动控制
燃烧系统的自动控制就是蒸汽压力的自动控制。汽压是燃烧自动控制的被控参数。对锅炉发出起动信号后,自动起动油泵和风机,并把风门调到大而不向炉膛内供油,用压缩空气大风量吹扫,即“予扫风”,以防止点火时发生“冷爆”。预扫气结束后自动把风门关到小位置,打开点火喷油电磁阀,喷入少量燃油;同时接通点火变压器进行点火。点火成功后,自动断开点火变压器,燃油电磁阀正常打开,进入正常燃烧。
2.4 自动保护和报警
按照要求在PLC编制中实现过水位保护、高水位保护、点火失败报警、燃烧熄火报警等。
3 系统设计
3.1 PLC选型及I/O分配
根据以上控制要求,船用辅锅炉控制系统采用FX2N-32MRPLC,它是日本三菱公司的产品,具有运行速度快,功能强,提供的I/O点数为16/16,除实际使用外,有足够的余量供系统以后扩展。模拟块采用FX2N-4AD和FX2N-4DA。提供4路输入和输出。通信模块采用FX-232AWC。
本系统PLC的I/O分配表如表1。
为了节能,锅炉控制系统中的给水、燃烧控制部分能采用变频器,那么整个锅炉的控制水平(如温度、压力、水位的控制精度)将可得到较大的提高,并且其节能效益是十分明显的,这点在很多的锅炉系统,特别是较大容量的锅炉控制系统中己得到证实,其明显的节能效益使得由于使用变频器带来的控制系统成本提高在短期内就可得到回收,所以我们设计的控制器在这方面作了改进,以适应不同的要求。
同时为了利用船舶主机排出的废气余热,在控制系统中加入了主机废气控制开关。
表1 PLC的I/O分配表
3.2 系统软件设计
按照船舶锅炉的全自动控制流程,在PLC中编制用户程序[2]。图1、图2为控制系统程序。
图1 系统程序图
按照船舶锅炉操作规程,每次开炉点火前先打到自动控制位置。检测水位是否正常,正常则检测油温和油压是否正常,正常则进入点火程序。锅炉点火燃烧后,当蒸汽压力达到正常供汽时(0.46MPa)。供水系统通过PLC首先判断水位是否在上限与下限范围内,若在此范围内则水泵进入恒压供水状态,并不断检测锅炉水位。当水位到达上限时,水泵停止,并继续检测水位;如水位高于上上限时,输出报警,请求排水。如到水位低于上限时,重新起动另一台水泵进行供水,以使水泵交替使用。如运行中检测到水位低于水位下限时,则两只水泵同时运行;当水位升至高于下限时,关闭一台水泵,加另一台水泵继续在工频状态下供水。如水泵工频运行水位仍继续下降并低于水位下下限时,PLC报警并控制锅炉停鼓风压火,直至高于水位下下限时,才解除鼓风停机恢复正常工作,从而完成供水联锁控制。若上述供水系统切换到手动方式,也必须由PLC进行联锁控制,以保证供水正常,锅炉安全运行。
图2 系统软件图
3.3 PLC控制的实践试验
由于船用辅锅炉燃烧控制中变量较多,所以控制电器用量较大, 为探索研究新技术应用,所以采用了可编程序控制器实现。考虑增大输出功率,故用小型中间继电器作为输出形式,以储备功率和隔离中小功率设备间的电联系。
在实践中,PLC输入回路设置了人工与自动控制方式的选择,在人工操作时, 各种功率元件的起动、停止及锅炉燃烧按钮仍然存在着。也保留设备安全运行报警等各环节。在自动选择时,设有各种压力和水位控制的各检测输入量。为调整方便,附有各人工模拟开关量输入,以备设备自检的需要。在船舶实际运行工况中,有主机排气的废气等设备的附加受热面,所以设有废气开启阀控件作为联接需要。