6ES7222-1HD22-0XA0现货库存
6ES7222-1HD22-0XA0现货库存
1 引言
可编程控制器(PLC)作为继电控制盘的替代物,以极高的可靠性和应用方便等特点,成为当今用途为广泛的工业控制器。现在它的应用已突破了当初逻辑控制的场合,深入到过程控制、位置控制、网络通讯等工程领域。本文根据某工程的实际需要,以三菱PLC为模拟目标,提出了一种以单片机构建PLC系统的思想。
2 系统构成
系统框图见图1。
该系统CPU芯片使用了一种新型的51系列单片机即Cygnal公司的 C8051F040。其指令集与MSC_51指令集完全兼容,使用方便,且采用流水线结构,其周期由标准的12个系统时钟周期降为1个系统时钟周期,处理能力大大提高,峰值性能可达25MIPS。内部集成了64K Flash ROM、4352字RAM、64位数据I/O口以及几乎所有的模拟与数字外设如:ADC、DAC、SMBus、UART、CAN、SPI、PCA、电压比较器、温度传感器、可编程增益放大器等。开发工具采用标准的JTAG接口,以边界扫描方式对CPU进行非入侵式全速的在系统调试。其性能较之传统51单片机有了很大的提高。
CPU和外部I/O接口之间采用光电耦合器件,实行强电和弱电隔离,切断现场干扰。计算机通过RS232串口与PLC系统通信,将PLC程序指令传送到PLC。PLC将接收到的指令保存到非易失性RAM中。这样做即可以长期保存PLC程序,又可以方便地随时修改程序。
3 PLC程序的执行过程
常见PLC以扫描方式工作。每次扫描的工作过程分为三步。
(1) 输入处理 程序执行前,PLC将全部输入点的状态读到输入镜像寄存器。在程序执行过程中,PLC不再读取这些输入点的状态,直到下一个扫描周期的输入处理。
(2) 程序处理 PLC根据读入的外部输入状态和其它元件的状态执行用户程序。这时的输出指令只写到输出镜像寄存器,输出点的状态并没有发生变化。
(3) 输出处理 全部指令执行完毕,将输出寄存器的内容全部刷新到外部输出点。程序回到步工作过程。
本PLC系统的工作过程与此相同。输入处理和输出处理用单片机实现起来比较容易,无需赘述。系统的关键是用户程序的处理。下面以三菱FX系列PLC一个简单的例子来说明本PLC系统对用户程序的处理方法。梯形图和相应的指令表见图2。
0:LD X000 9: LD X010
1:AND X001 10:LD X011
2:AND X002 11:AND X012
3:LD X003 12:LD X013
4:OR X004 13:AND X014
5:ANB 14:ORB
6:OUT Y000 15:OR X015
7:OR X006 16:ANB
8:LD X010 17:OUT Y001
首先分析指令 AND X001,指令执行前有状态B,执行该指令时,将当前状态B 和X001的状态进行与运算,形成状态C,这是指令AND X002执行前状态。C是B的刷新值,它们实际上是一个变量。这个变量反映程序执行时当前的状态值。当遇到输出指令OUT Y000时,就把当前状态值传送给输出寄存器。把AND X001作为一单元块,可认为这个单元块有单输入单输出的结构。输入状态和单元块内元件的状态运算后得到输出状态。
再分析指令LD X003、OR X004,如果将这两条指令组合后看作上述单输入单输出结构的单元块,执行前的状态为D,把X003、X004元件并联后的状态作为单元块内元件的状态,和D与运算后得到状态G.。但细化一步执行LD X003这个子单元块时,当前状态D需保存,取X003的状态作为当前状态值E,和X004或运算后得到F。执行ANB时,把先保存的状态值D和状态值F与运算后得到新的当前状态值G。
这里执行LD与AND产生区别是在于:AND指令没有分支,而LD指令产生分支,程序执行前的状态值需要保存。同样,在遇到分支合并时,需要使用到先前保存的状态值 。根据梯形图的编写规则,状态值的保存和使用是一种先进后出的结构,所以可以使用进栈和出栈的方法来实现。指令的具体实现过程归纳如下:凡是遇到产生分支的指令,例如LD指令,需将当前状态值进栈保存,取当前操作元件的状态作为当前状态值;凡是遇到分支合并的指令,例如ORB、ANB指令,需将栈顶值出栈与当前状态值运算成为新的当前状态值。
在具体实现时,采用了另一种形式的栈。由于三菱FX系列PLC的LD连续使用不能超过八次,因此采用一个可以位寻址的片内RAM字节作为栈空间来存放当前状态值。如果使用栈空间的高位作为当前状态值,每次压栈就把该字节进行不带进位的循环右移,出栈时反之。在LD X000指令执行后,进栈状态A没有出栈,LD X010指令又进栈保存当前状态值,以前的压栈值A废之不用,即每条与母线相连的LD指令产生压栈值都不出栈。这样避免了因使用PUSH POP指令用一个字节的空间来保存一位的当前状态值造成的RAM利用效率低的问题。
LD X010后的指令执行过程如下:LD X010 把当前状态值H压栈,取X010的状态作为当前状态值I;LD X011把当前状态值I压栈,取X011的状态作为当前状态值J;AND X012 把当前状态值J和X012的状态与运算后得到当前状态值K;LD X013把当前状态值K压栈,取X013的状态作为当前状态值L;AND X014把当前状态值L和X014的状态与运算后得到当前状态值M;ORB 弹出压栈值K和当前状态值M或运算后得到新的当前状态值M;OR X015把当前状态值M和X015的状态或运算后得到当前状态值N;ANB弹出压栈值I和当前状态值N与运算后得到新的当前状态值O;OUT Y002 把当前状态值写到Y002的输出镜像寄存器。
4 检查程序
接收到程序后,在程序执行之前,还需对程序的语法正确性进行检查。这里只介绍与程序状态值栈相关指令的语法检查。
首先]需要设置一个位标志EN_BUS和一计数器LD_N。ENBUS表示下一指令能够与PLC梯形图中的母线相连。计数器LD_N表示自与母线相连的指令之后由于LD指令引起的堆栈次数。检查程序之前,初始化如下:
EN _BUS=1
LD_N=1
检查程序时,如果遇到LD指令,程序流程如图3(a);如果为ORB或ANB指令,则LD_N=LD _N-1;如果为OUT等与零母线相连的输出指令,程序流程如图3(b)。
这些基本操作执行后,如果检测到LD _N大于8,说明连续LD指令太多,程序状态值栈空间溢出;如果LD _N等于0,说明ANB或ORB指令数多于与LD指令,数量不匹配。还有些指令例如程序标号P、循环范围终止符NEXT等必须与母线相连。如果这些指令出现在EN _BUS=0的情况下,说明该程序有错。
引言
随着中央提出大力发展清洁能源的建设并为激励农村和边远山区的进一步发展,国家对小水电事业给予越来越多的关注。我国的小型水电站在近20年得到了极为迅速的发展,其中以万千瓦以下的小型水电站居多。对这些小型水电站的监控保护和自动控制也显得尤为重要。本文主要讲述了三菱FX2N系列PLC在水电站有功调节中的应用。
水电站的有功调节通常是通过调速器实现的,但当水轮机组并入电网运行时,对于单台发电机来说转速反馈几乎不起作用。近年来,随着自动发电控制(AGC)的需要,有功功率在控制系统中的调节品质已成为当前电力系统自动化领域的突出问题。
2 系统组成
本系统中控制的两台水轮发电机型号为SFW2500-10/1730、6.3kV/286A。本系统采用分层分布式布局,配置如图1所示。主要由2个机组监控屏、发电机保护屏、公用监控屏、主编线路保护屏和电量屏构成。通讯采用高速以太网与上级调度、操作员工作站进行通讯。其中公用监控屏由可编程控制器(由三菱FX2N-80MR和2个FX0N-16EX扩展模块组成)、自动准同期装置、触摸屏、电力测控仪和逆变电源组成,在公用监控屏中实现对发电机的有功调节。
图1 系统配置图
3 控制要求
在电力系统中,频率与电压是电能的2个主要质量指标,电力系统中的频率变化的主要原因是由于有功功率不平衡引起的。系统的负荷经常发生变化,要保持系统的频率为额定值,就必须使发送的功率不断跟随着负荷的变动,时刻保持整个系统有功功率的平衡。否则,系统的频率就会大起大落,保证不了电能的质量,甚至会造成事故与损失。
当负荷吸取的有功功率下降时,频率增高;当负荷吸取的有功功率增高时,频率降低,即负荷调节效应。由于负荷调节效应的存在,当电力系统中因功率平衡破坏而引起频率变化时,负荷功率随之的变化引起补偿作用。如系统中因有功功率缺额而引起频率下降时,相应的负荷功率也随之减小,能补偿一些有功功率缺额,有可能使系统稳定在一个较低的频率上运行。如果没有负荷调节效应,当出现有功功率缺额系统频率下降时,功率缺额无法得到补偿,就不会达到新的有功功率平衡,频率会一直下降,直到系统瓦解为止。
频率和有功功率自动调节的方法主要有:
(1) 利用机组调速器的调节特性进行调频;
(2) 根据频率瞬时偏差,按比例分配负荷,构成虚有差调节频率和负荷的方法;
(3) 按频率积分偏差调节频率,满足“等微增率”原则分配负荷;
(4) 按给定负荷曲线调节有功功率(本文所介绍的是按给定负荷曲线调节有功功率)。
电站的调节系统应该使总功率等于负荷曲线给定的功率。而机组之间则按“等微增率”原则经济分配负荷。如果系统频率偏差不超过调频电站所能补偿的范围,则调功电站的调节系统对频率偏差不应作出任何响应。如果系统运行工况发生了变化,出现了较大的频率偏差则调频电站无力完全补偿偏差值,那么调功电站的自动调节装置应该作用于各台机组的调速器,使之改变各台机组的有功出力来帮助恢复系统频率。
图2 功率与频率关系曲线
图2示出功率与频率的关系曲线。在死区±Δfmax范围内,频率偏差信号Δf不起作用,此时电站的实际功率 与给定的总功率PG之间的偏差ΔP产生调节作用。
PG为电站负荷曲线给定装置取得的,使由各台机组有功功率测量元件测到的有功信号相加后得到的。当时,两台机组的调节作用只受有功偏差ΔP的影响,而与频率偏差Δf无关,此时调节特性方程为:
4 系统的硬件设计
图3示出系统硬件框图。根据系统的控制要求配置硬件如下:
图3 系统硬件简图
·控制器:三菱FX2N-80MR和两个FX0N-16EX扩展模块组成;
·人机界面:触摸屏;
·其它设备:2个DC24V继电器、功率表以及其它的辅助器件。
5 系统软件设计
本系统确保整个系统频率的稳定和电网的稳定供电。控制流程图如图4所示。
图4 系统流程图
部分梯形图如图5所示:当系统需要进行有功调节时,系统的软件或是手动发出信号开始调节,此时采集1个实时有功数据此数据与设定值(即目标功率值)进行比较并进行数据处理算出需要调节的时间,然后发出信号使调节继电器动所开始调节。如未达到则有可能是系统内部有故障。为了避免使程序进入死循环,则调节四次仍未能达到要求就自动中止程序)。如图4所示,当M10接到触发信号后瞬时接通使D300采到的瞬时有功功率数据与D301(设定值)进行比较。当D300 >D301时输出信号M300使PLC的Y001输出并使调节继电器动作进行调节。
图5 部分程序梯形图
6 结束语
本文所设计的系统操作简单、自动化程度高、应用广泛。减小了小型水电站工人的劳动强度,增加了整个系统的稳定性。经过一段时间的认真测试证明该系统已经完全符合小型水电厂的有功调节的要求。
在FX系列中,指针用来指示分支指令的跳转目标和中断程序的入口标号。分为分支用指针、输入中断指针及定时中断指针和记数中断指针。
1.分支用指针(P0~P127)
FX2N有P0~P127共128点分支用指针。分支指针用来指示跳转指令(CJ)的跳转目标或子程序调用指令(CALL)调用子程序的入口地址。
如图1所示,当X1常开接通时,执行跳转指令CJ P0,PLC跳到标号为P0处之后的程序去执行。
图1 分支用指针
2.中断指针(I0□□~I8□□)
中断指针是用来指示某一中断程序的入口位置。执行中断后遇到IRET(中断返回)指令,则返回主程序。中断用指针有以下三种类型:
(1)输入中断用指针(I00□~I50□) 共6点,它是用来指示由特定输入端的输入信号而产生中断的中断服务程序的入口位置,这类中断不受PLC扫描周期的影响,可以及时处理外界信息。输入中断用指针的编号格式如下:
例如:I101为当输入X1从OFF→ON变化时,执行以I101为标号后面的中断程序,并根据IRET指令返回。
(2)定时器中断用指针(I6□□~I8□□) 共3点,是用来指示周期定时中断的中断服务程序的入口位置,这类中断的作用是PLC以指定的周期定时执行中断服务程序,定时循环处理某些任务。处理的时间也不受PLC扫描周期的限制。□□表示定时范围,可在10~99ms中选取。
(3)计数器中断用指针(I010~I060) 共6点,它们用在PLC内置的高速计数器中。根据高速计数器的计数当前值与计数设定值之关系确定是否执行中断服务程序。它常用于利用高速计数器优先处理计数结果的场合
1 引言
副井提升机信号及综合保护系统,是副井提升系统的重要组成部分。该系统工作性能的优劣,直接影响到提升机的安全运行。某煤矿副井提升机分为两套提升绞车,一套为双罐笼提升-双层提矸(换层操作)、双层提人(不换层,设人员上下桥台)及其它辅助作业;另一套为带平衡锤的单罐笼提升—双层提矸(换层操作)、双层提人(不换层,设人员上下桥台)及其它辅助作业。原信号系统中的井口闭锁信号及打点信号由于器件的老化等原因,动作迟缓或误动作。同时,可编程序控制器的高速发展和成熟应用,也为副井提升信号系统的改造提供了良好的前提条件。因此,从满足现场需要和操作方便灵活的角度出发,应用可编程控制器对其进行改造。
2 三菱FX_2N可编程控制器
三菱FX_2N系列可编程控制器是小型化,高速度,高性能的产品,是FX系列中次的超小型程序装置。除输入出16~25点的独立用途外,还可以适用于在多个基本组件间的连接,模拟控制,定位控制等特殊用途,是一套可以满足多样化广泛需要的PLC。它具有如下特点:
l 系统配置既固定又灵活
在基本单元上连接扩展单元或扩展模块,可进行16--256点的灵活输入输出组合。
l 备有可自由选择,丰富的品种
可选用16/32/48/64/80/128点的主机,可以采用小8点的扩展模块进行扩展。
可根据电源及输出形式,自由选择。
l 令人放心的高性能
程序容量:内置800步RAM(可输入注释)可使用存储盒,大可扩充至16k步。
l 编程简单
本系统采用三菱的FX2N系列PLC实现上下井口的各种操作。上井口为FX_2N128MR,下井口为FX_2N80MR,车房为FX_2N48MR除紧停信号单独外的各种操作及信号的处理均由可编程控制器完成
3 系统构成
系统框图如图1所示,由车房显示系统、上井口信号操作系统和下井口信号操作系统等三部分组成。
3.1 车房显示系统
车房显示系统主要完成提升过程中的各种信号显示,包括提人、提物、急停、换层、检修等的汉字显示,快上、快下、慢上、慢下、停车等的汉字和数字显示,三次提升信号所对应的数字记忆,提升钩数的累计显示等等。对快上、快下、慢上、慢下、停车的五种信号同时具有与信号数字相对应的音响信号,如打点信号为4,则对应有四次音响信号。在紧急停车时具有上井口、下井口、车房的全线音响报警信号。
各种与绞车控制回路闭锁的信号集中到车房显示系统的控制柜中,再分别接入各控制回路,便于维护和检修。
3.2 上井口信号操作系统
上井口信号操作系统的功能主要是根据提升任务的需要向车房发出相应的打点信号及完成相应功能的转换,如提人、提物、换层、检修等。根据煤矿安全规程要求,在提升过程中,下井口的信号必须由上井口转发,即每次提升开始,下井口首先向上井口发出打点信号,上井口再发出相应的信号,并传至车房,同时在操作面板上显示相应的数字和发出相应次数的音响信号。如果上井口发出的信号与下井口不一致,信号将不能发出,操作面板上也相应显示和音响信号。但当上井口下放人员时,不论下井口发出什么样的提升信号,均服从于提人,即上井口可以将提人信号直接发至车房,实施提人操作。在本系统中不论是提人还是提物,只有提人、提物转换开关的位置选对,打点信号才有效。一旦信号正确发出,除紧急停车信号外,系统将闭锁各种信号,确保提升的安全。当需要换层时,只要将换层转换开关置于换层位置,提升机将按照换层所设定的速度运行。在系统检修时,将检修转换开关置于检修位置,此时提升机将按照检修速度运行。
上井口发出的各种信号均传至车房,为司机提供开车信号。在提升信号没有发出时,绞车开不了车。在信号系统中还设置了提升方向的闭锁,绞车只能按正确的方向开车。
在系统中如果上下井口的闭锁和操车信号异常,显示屏上将出现相应的闪光指示,以便及时的发现问题和解决问题。为了方便上下井口的联络,系统中设置了联络信号操作按钮,通过此按钮实现各种联络。
当信号系统的PLC检修或故障时,本系统可以通过设置的备用信号系统发出各种开车信号,确保提升系统的正常运行。
3.3 下井口信号操作系统
下井口信号操作系统的功能基本与上井口信号操作系统的功能一样,不同之处在于:
(1) 下井口的信号只能传至上井口,而不能直接发至车房。
(2) 当下井口发出提人信号时,上井口只能发出提人信号。
当需要紧急停车时,上下井口均可通过紧急停车开关,发出全线紧停声光信号。