全国服务热线 15221406036

西门子6ES7222-1BF22-0XA8技术数据

更新时间:2024-05-08 07:10:00
价格:请来电询价
联系电话:
联系手机: 15221406036
联系人:聂航
让卖家联系我
详细介绍

西门子6ES7222-1BF22-0XA8技术数据

第5章 测量子系统的设计



5.1测量系统的组成
  测量系统中被试电机侧的电参数、负载电机侧的电参数和变频机组的频率都必须传输到上位机,在组态界面上实现数据监控。
  上面那些参数首先必须通过传感器和互感器测量,如主回路中用到的电压互感器用于测量电压,电流互感器用于测量电流。把测得的数据必须传输到上位计算机进行监控。而且有些参数如温度等必须通过传感器测量。
  基于上面的考虑设计测量系统的基本框图如图5.1所示:




5.2 数据采集及处理系统原理和组成
  信号采集系统如下图5.2所示,它由传感器 、信号处理电路、A/D板、扭矩仪、工控机等组成。被试电机带动负载电机,被试电机与负载电机之间接有转速传感器以测试在不同的施加负载下电机输出的转速、转矩和功率。3只电流传感器用于检测三相电流;3只电压传感器用于检测电机的有功功率;一只三相无功功率传感器用于检测电机的无功功率。还设置了温度传感器用于检测电机温升。模拟信号又信号处理电路处理后,分两路,一路送数字仪表显示,另一路又A/D板采集后送工控机进行处理和组态监控。转矩转速传感器检测信号由微机扭矩仪显示并通过RS-485串口送至工控机。信号采集处理由传感器、信号处理电路、A/D板、扭矩仪、工控机共同完成。值得说明的是,功率因数、电机的输出功率、电机效率不是直接测量出来的,而是通过以上参数运算间接获得。
  以下对上述框图中主要硬件模块的作用分别予以简要介绍。
  A/D采集卡 A/D采集采用AC1820 高速数据采集卡。该卡提供16路单端输入12位A/D转换,A/D 转换速度快可达800kHz。该卡采用板上RAM 存储方式,板上RAM 为128K字,可以脱机采样,适合bbbbbbS系统的应用。该卡的以上特点完全能够满足高压电机试验的各项要求。
信号处理电路 它的作用是将各传感器的输出信号转换成为0~±5V的电压,以便A/D采集卡采集和计数。同时,也为A/D采集卡提供适当的保护。




  本文设计中采用青岛青智公司的数字电参数测量仪(自带RS-485接口)测量,它能够替代图5.2虚线框中的模块。
  它的型号为8901F~8905F。它的工作原理:被测量的电压、电流信号首先变换成较小的电压信号,送到高速模拟数字转换器,使之转换成单片机可以处理的数字量。单片机对采集到的数字量进行运算处理,并将终计算的结果以数字的形式显示出来,或通过打印机打印出来,或以串行通讯形式将数据传送给其他设备。
  与传统指针式仪表相比,数字电参数测量仪具有以下优点:
1.所测信号数值为真有效值;
2.直接数字显示,无读数误差;
3.对于波形失真的信号同样适用;
4.用一台仪器可以测量多个参数。
  扭矩仪采用兰光NJY-20扭矩仪,结构原理如下:
  将待测产品固定在NJY测试仪的夹具上,该夹具与一个高精度的扭矩传感器紧密连接,通过操作者手旋瓶盖,传感器将手旋扭矩转换成相应的电压信号,后由单片机接收并分析处理,后出具试验结果。
  电参数测量仪与工控机的硬件连接如图5.3所示:



  在系统设计中,一般工控机的串行口有3个,两个RS-485和1个RS-232。如系统用于实际试验中时,若串行口不够,可考虑扩展。顺便提一下,电参数测量仪与上位机的通讯还要有软件设计(如通讯协议等)。由于实验条件有限,所以在通讯方面,主要实现了PLC与上位机的通讯。
5.3 电流互感器和电压互感器的选择
5.3.1 电流互感器的选择
1)电流互感器的选择原则
  保护用电流互感器的性能应满足继电保护正确动作的要求。首先应保证在稳态对称短路电流下的误差不超过规定值。对于短路电流非周期分量和互感器剩磁等的暂态影响,应根据互感器所在系统暂态问题的严重程度、所接保护装置的特性、暂态饱和可能引起的后果和运行经验等因素,予以合理考虑。如保护装置具有减缓电流互感器饱和影响的功能,则可按照保护装置的要求选用适当的互感器。
  在本系统中,系统在进行空载和负载试验时,由于被测电机的容量和负载可在一个较大范围内改变,因此电机的电流变化的范围很大,从几安培到几十安培甚至几千安培。这给电流测量带来了精度和量程选择的问题。当然,电流的测量一般选用电流互感器,在本系统中,电流仍通过电流互感器来测量。
  电流互感器是按电磁感应原理工作的,主要由铁心、一次绕组和二次绕组等几个部分组成,电流互感器的一次绕组匝数很少,使用时一次绕组串联在被测线路里。而二次绕组匝数较多,与测量仪表和继电器等电流线圈串联使用。
  按额定变流比选择(一、二次额定电流之比),其中一次电流是按长期运行能满足允许发热条件确定的。我国国家GB1202-97《电流互感器》中额定一次电流标准值。已对一次额定电流规定了系列化标准。有从1A至25000A等不同规格的电流互感器可供选择。
  考虑到电流的变化范围必须要用到多组电流互感器。在本文中有代表性的选用了两组电流互感器,变流比分别为5/5、30/5,等级精度均为0.2。在实际试验过程中根据实际情况会用到更多的电流互感器。

5.3.2 电压互感器的选择
  电压互感器按其工作原理可以分为电磁感应原理可以分为电磁感应原理和电容分压原理两类。常用的电压互感器是利用电磁感应原理工作的,它的基本构造与普通变压器相同,主要由铁心、一次绕组、二次绕组组成。它一次绕组匝数较多,二次绕组匝数较少,使用一次绕组与被测量电路并联,二次绕组与测量仪表或继电器等电压线圈并联。
  在系统中选用JSJW-10型电压互感器,它为三相三绕组五铁心柱式油浸电压互感器,额定电压为10KV,供测量电压、电能、功率、继电保护、功率因数及绝缘监督使用。


第6章 展望和结论



6.1 展望
  由于时间和条件的限制,系统的设计有很多方面需要改进:
  1)在PLC和组态王通讯过程中,由于实验室设备和条件的限制,在通讯方式上只能采用RS-232通讯,但是如果在现场系统通讯中可以考虑采用RS-485接口。
  2)在本系统中,PLC与上位机的通讯固然重要,但是电机测量的有些参数必须通过数据采集系统传输到上位机,但是怎样能在组态界面上显示出来,是一个非常重要的问题。在系统组态界面上,电流、转速等没有显示,考虑通过板卡传输过来,首先把板卡插到工控机的主板上,与外部智能仪表相连,并且在组态王工程浏览器中新建板卡,并且选择对应智能仪表的型号,这样数据就可上传。方便组态实时监控。
  3)在此课题设计中,由于时间及条件的限制,只完成了系统设计的主要部分,在电机实际测试中,还必须要有对电机性能的评判,这就需要用到电机测试专家系统,对电机性能进行诊断。专家系统包括知识库、推理机、数据库等组成。
  4)在实际试验中,要实时监控PLC的工作状态,可采用VB6.0实现组态王软件实时监控可编程控制器PLC。一般采取的方法是:利用Visual Basic提供的串行通讯功能,实现与可编程控制器PLC之间的通讯,再利用VB的DDE功能完成组态王与Visual Basic之间的动态数据交换。 这样就把从可编程控制器PLC采集到的外部信号通过Visual Basic 间接动态地显示在组态王界面上。结构框图如下:





  数字信号处理、系统辨识、专家系统是以后电机测试的发展方向,随着电机种类的变多,功能增多、加强,对电机的测试要求也越来越高,而这些分析方法对电机的状态有深入的分析,获取的信息大大增加,能够发现传统方法所不能发现的问题。
  我国的电机试验系统的研制会慢慢走向成熟,对高压电机、微特电机系统测试将更加智能化、自动化。
6.2 结束语
  本系统利用低压机组成功实现了10kV高电压电机的负载试验,由于时间和条件限制,虽然没有在实际中得到现场测试,但是,此系统设计完整,包括软件和硬件,构成了一个智能测试系统。工控机作为上位机,提供了良好的人机界面,进行全系统的监控和管理, PLC作为下位机执行可靠有效的分散控制, 并且成功的实现了组态王和三菱PLC之间的正常通讯,按照我们设计的空载和负载软件流程图在组态界面上模拟了PLC对主回路的控制,动画效果和顺序控制良好。
  在设计过程中,无论从硬件选择和软件编程方面,都出现了或多或少的问题,主要源于工程经验不足,考虑问题不周全,加之工作现场条件有限,可供参考的文献资料缺乏。经过反复修复和调试,达到了预期的目的,基本上完成了所选课题的任务。
  在本课题的设计过程中,理论和实践两方面的分析问题、解决问题的能力都得到了锻炼和提高。由于时间和作者水平的有限,论文中必然存在不足之处,敬请老师批评指正。

摘 要
  本文介绍了一套基于PLC、组态软件的高压电机智能试验系统的原理、组成和设计过程。通过采用工控机为上位机,PLC为下位机,实现了高压电机型式试验自动控制。该系统使用了组态王软件和三菱PLC智能化控制体系,能够完成高压电机一般性能项目的检验,而且该系统具有良好的人机界面,操作方便、结构简单,并能应用于某大功率型电机试验站计算机自动测试系统,有效地提高电机试验的自动化程度,使测试数据更加客观jingque,有利于更好的检测电机的性能。

第1章 引言


  以前,我国对电机的试验一直是非智能化的,一般采用人工单机控制,时效性较差,误差也较大,很难满足测试的要求。
  近几年来,我国对电机的智能检测有了很大的发展,国内电机行业的检测装备和检测技术有了较快的发展,各种检测传感器、检测仪器已比较齐备,而且性能也较稳定,为电机检测系统的研制提供了有利的条件。但就高压电机检测系统的实际应用而言,还存在着以下不足:高压电机检测系统的自动化程度较低、系统的可靠性、安全性不够等等。
  高压试验系统投资总额较高,而作为投资方的电机质检机构,希望在原有低压检测系统的基础上进行设备改造,研制出能进行高压电机试验的检测系统。同时,制造企业由于各种因素的制约,缺少完备的型式试验设备和相关的技术人员,对存在的性能缺陷往往不能准确进行地诊断,分析缺陷的原因,提出明确的改进建议。
  所有的电机(包括高压电机)在出厂之前都要经过型式试验和性能测试,全面达到技术要求之后才能投产或继续生产。这些测试或试验的数据包括电机的电压、电流、转速、功率、转差率、频率、效率、温度、电阻等,这些参数是在满足GB1032三相异步电动机试验方法等国家有关标准的精度及其安全要求的基础上通过空载试验、负载试验、温升试验、转矩试验等多种试验获得的,本文所介绍的智能高压电机试验系统具有自动测试功能,通过测量数据,能够很好地反映电机性能及其质量。

1.1 电机型式试验简介
  电机试验是利用仪器、仪表及相关设备,按照相关标准的规定,对电机制造过程中的半成品和成品,或以电机为主体的配套产品的电气性能、力学性能、安全性能及可靠性能等技术指标进行的检验。通过这些检验,可以全部或部分的反映被试电机的相关性能数据,用这些数据,可以判断被试产品是否符合设计要求、品质的优劣以及改进的目标和方向。
  所谓型式试验是一种全面的性能试验,能够较确切地得到被试电机的有关性能参数的试验,其目的是为了确定电机的电气和机械参数是否全面达到技术要求,各种型式电机均需要通过本试验才能投产或继续生产。和英、苏、德等国家都把型式试验当作一种性能试验,用来检查电机的特性和参数。这种试验一般只对各种型式电机中的台或首批的几台样机进行,所以称为型式试验。
  根据需要,试验可包括标准中规定的所有项目,也可以是其中的一部分项目。
  按国家标准规定,在下述情况下,应进行型式试验:
1.新设计试制的产品;
2.经鉴定定型后小批试投产的产品;
3.设计或故意上的变更足以引起电机的某些特性和参数发生变化的产品;
4.检查试验结构与以前试验结构发生不可容许的偏差的产品;
5.产品自定型投产后的定期抽试。


1.1.1 空载试验和负载试验
  电机试验的项目很多,如空载试验、负载试验、堵转试验、温升试验等等,在此系统设计中只介绍和设计了空载和负载试验。所以有必要弄清它们的试验目的和试验过程。

1.空载特性试验

(1)试验目的:

三相异步电动机的空载试验是给定子施加额定频率的额定电压,试验目的:
a.检查电机的运转的灵活情况,有无异常噪声和较强的振动;
b.通过测试求得电机在额定电压时的铁心损耗和在额定转速时的机械损耗;
c.通过试验得出空载电流与空载电压的关系曲线。这条曲线其实就是一条磁化曲线。它可以反映出电机磁路工作的情况,例如铁心材料的性能,转子的气隙等的选择是否合理。

(2)试验过程:
  将电机启动后保持额定电压和额定频率空载运行到机械损耗稳定。判断机械损耗稳定的标准是:输入功率相隔半个小时的两个读数之差不大于前一次输入功率的3%,在实际应用中,一般凭经验来确定,对1KW以下的电机一般运行15~30min,对1~10KW的电机一般运行30~60min,对大于10KW的电机应为60~90min.
试验时,施于定子绕组上的电压从1.1~1.3Un开始,逐渐降低到可能达到的低电压值,使电流开始回升为止,其间测取7~9个点,每个点应测取下列数值:三相电压(如可确定三相平衡时,可只测一相),三相电流,输入功率P0。


2.负载试验
(1)试验目的:
  负载试验的目的实际上是要测取电机的工作特性曲线,考虑效率和功率因素是否合格,取得分析电机运行性能的必要数据。

(2)试验过程:
  测试应在被试电机接近热状态下进行,在额定功率和额定频率下,改变负载,在1.25~0.25倍额定功率范围内测取6~8点读数,每点同时测量:三相电压,三相电流,输入功率,功率因素,转差率,输出转矩。转差率实际是通过测出转子的转速计算出来的。

1.1.2 电机测试标准
  本试验中要实现系统的设计首先必须满足GB1032三相异步电动机试验方法等国家有关标准的精度及安全要求:
1.试验电源
1)试验电源的电压波形正弦畸变率(电压波形中所包含的除基波分量以外的各次谐波的有效值平方和的根值与基波分量有效值之比的百分数)应不超过5%,在进行温升试验时应不超过2.5%。

2)试验电源的三相电压对称系统应符合下述要求:
  电压的负序分量和零序分量均不超过正序分量的1%;在进行温升试验时,负序分量不超过正序分量的0.5%,零序分量的影响予以消除。
  试验电源的频率与额定频率之差应在额定频率±1%范围内。

2.测量仪表
  试验时,采用的电气测量仪表的准确度应不低于0.5级,三相瓦特表的准确度应不低于1.0级,互感器的准确度应不低于0.2级,电量变送器的准确度应不低于0.5%级(检查试验时应不低于1%),数字式转速测量仪及转差率测量仪的准确度应不低于0.1%±1个字,转矩测量仪及测功机的准确度应不低于1%(实测效率应不低于0.5%)。
  选择仪表时,应使测量值位于20%-95%仪表量程范围内。

3.测量要求
进行电气测量时,应遵循下列要求:
1) 三相电流用三电流互感器(或二互感器)法。
2) 采用电流互感器时,接入付边回路仪表的总阻抗(包括连接导线)应不超过其额定阻抗值。
3)试验时,各仪表读数同时读取。在测量三相电压或三相电流时,应取三相读数的平均值作为测量的实际值。
1.2 电机自动测试的特点及和当前电机测试的现状
  以往的电机测试往往采用普通的指针式仪表由人工读数、人工记录,然后由人工整理成数据并描绘曲线或编写实验报告。由于某些原因如电源的波动、频率波动、负载波动等因素会使仪表的指针摆动,为了能比较准确的读出某一瞬间的各项被测参数,往往需要几个人同时读表,工作效率低。不仅如此,由于读表的不同时性以及读数、记录、计算中各种人为误差还会使实验数据分散性大,试验经过的准确度低,重复性差,现在这种测试方法基本被淘汰。
  另外一种测量方式是使用各种电子测量仪表,如多功能电参数测试仪可以测量电机在各种状态下的转矩、转速、输出功率等,这类仪器一般由单片机构成,测量精度高,采用数字显示,功能比较完备,提高了自动化程度,但是对数据的处理、试验过程中的读数同步等问题,仍然不够理想。
  在数字仪表的基础上发展起来的数字式自动测试系统可以控制测量过程,处理测试数据,记录与显示测量结果。
  采用微机的电机自动测试系统在测试功能、测量精度等各项指标上都远远超过了传统的实验方法。使电机测试步入了新的时代。[21]
  近几年来,由于计算机的功能不断强大,各种人机界面软件不断涌现,这给电机测试提供了可视化监控画面。这又使电机测试迈进了一大步。

1.3 系统设计的主要内容及要求
  本课题实现的是一个高压电气控制系统,拟在论证各种高压检测实现方案的基础上,选择一种方案设计。并以H400以下,500KW以下、额定电压10KV样机为试验对象,设计自动控制系统,能够完成高压电机一般性能的检测。并且选定合适的变压器、调压器、高压设施、电缆等,能够实现高压电机一般性能项目的检测,满足GB1032三相异步电动机试验方法等国家有关标准的精度及安全要求。绘制原理图、主回路、控制回路、测量回路框图,设计控制流程及程序、进行量程分档,选用合适的仪器设备及其参数设置,完成系统总体设计。

1.4 本文完成的主要工作
  本文完成的主要工作如下:
(1)分析型式试验要求,查阅并检索国内外电机试验的文献资料;
(2)研究高压试验方法标准及试验方案,确定总体方案;
(3)设计电机试验主回路系统;
(4)按照标准精度要求选用仪器仪表,设计测量回路;
(5)设计电气控制系统,包括上位机、下位机、保护系统及上位机和下位机的通讯;
(6)系统设计展望并对本文进行小结。
1.5 论文的体系结构
  根据设计的主要内容,论文各章节之间的体系结构如图1.1所示:




第2章 系统总体方案设计



  目前电机自动测试系统的主要组成很相似,主要有:微机系统及其外部设备、测试硬件平台、各种数字测试仪器。在试验的方法上主要有两种类型:一个就是试验的过程控制是由测试硬件平台来实现,微机系统只进行数据处理、曲线绘制等。比如浙江大学电磁研究所1995年研制的一套电机自动测试系统,它是用微机接口控制器来实现控制的。还有就是美国西屋公司研制的电机自动测试系统,整个试验过程是由PLC实现的。
  随着微机技术的发展,微机的性能越来越强大,软件的发展也使实现控制变得极为方便、灵活,所以现在大多数系统都把控制逻辑由微机控制,通过通讯口对设备进行控制,因为运行在微机上的软件编写非常灵活,很多功能非常容易实现,能进行复杂的逻辑运算、判断,而且运算速度非常快,系统灵活性大大增加。
  本课题所要设计的高压电机智能试验系统,和传统的电机试验一样,要实现负载试验,首先必须有一个总的构思:
  高压电机试验系统首先要考虑为被试电机提供一个可调的高压电源,有个可调高压电源,考虑本系统完成的是电机的负载试验,必须让负载变化,所以必须还得提供一个可调的大功率负载,而且这个负载必须平滑可调。在本系统中,负载是利用与被测电机电压、功率相同的另一台负载电机M2来实现的。为了让系统按设定的要求工作,必须采用PLC对其控制,而且试验过程中各个参数必须通过测量系统和数据采集才能上传至上位机,通过组态软件实施监控。

2.1系统所要实现的功能
1)系统能够使变频机组的频率在允许的范围内(保证负载电机不过载)平滑可调;
2)系统能够实现被试电机负载平滑可调;
3)系统能够按照试验要求对变频电源和负载实现自动控制;
4)系统能够按要求实时采集数据,并能把数据通过串行口传输到上位机,软件提供可视化菜单;
5)系统能够在遇到异常情况(如过压、过载等)自动切断电路或发出报警信号。

2.2 系统的组成
  本智能试验系统与传统的电机试验系统有所区别,本系统不但要实现电机的试验,而且要实现控制自动化,数据采集自动化,并能实现微机现场监控参数变化,更重要的是所涉及的试验电机为10KV的高压电机,还要考虑高压保护等,因此,勿庸置疑,本系统设计要涉及更多控制和保护模块。
  根据系统的设计及控制要求,试验系统分为控制子系统、高压子系统、可调负载子系统、测量系统、数据采集子系统和组态监控系统等部分。
  控制子系统由上位机(工控机)、下位机(PLC)和控制装置三个部分组成。上位机采用组态王组态软件进行现场监控;下位机采用三菱PLC进行控制。
  数据采集系统考虑采用传感器、变送器、A/D转换装置通过RS-485接口把数据传送到上位机或者通过自带RS-485接口的高精度智能仪表直接把数据上传到上位机,组态界面实时监控试验结果。
  同时,组态软件也为试验者提供了可视化监控画面,有利于试验者实时现场监控。
系统组成框图如图2所示:




2.3 系统的工作原理
  图2中,虚线框中控制及其高压保护装置、被试电机以及可调负载构成了主回路系统。PLC按要求控制主回路系统的工作,当被试电机的电压和负载满足要求时,测量系统启动,测量主回路中被试侧和负载侧的各个参数,然后通过数据采集系统把数据传输到工控机,组态界面对数据进行监控。PLC和工控机之间通过串行接口连接,工控机可通过PLC控制现场的工作流程。整个工作构成了一个智能化电机测试系统。


第3章 主回路系统设计



3.1 设计的重要性及思想
1.主回路设计的重要性:
  实现高压电机试验首先必须解决的问题之一是主回路的设计,这步非常关键,控制系统和测量系统都是基于主回路系统工作,并对它进行自动化、智能化控制及测量,是整个系统设计的基石。
2.设计的基本思想:
1)负载可调;
  考虑系统要实现的功能和设计的要求,既然是负载试验,首先必须解决负载问题,为了方便起见,采用双电机系统,只要让负载电机工作在发电状态,即成为被试电机的负载,但是又必须解决负载在一定范围(被试电机允许的负载)之内平滑可调,只要在一定频率范围内改变负载电机的频率,即可改变被试电机的负载,本系统中采用变频机组来平滑调节频率,这样达到改变被试电机负载的目的。
2)高压可调;
  系统一般进线电压为380V,要实现所规定的高压,并且让其可调,必须用到升压变压器和调压侧,所以在两侧都要用升压变压器和调压器。
3)测量仪表的选定;
  在本系统中测量电流用电流互感器,考虑负载的大幅变化,被测电流的变化范围,要用到几组电流互感器来随电流的变化自动切换,提高电流测量的精度。电压的测量采用电压互感器。
4)稳压和稳频;
  主电路中进线电压为电网电压,难免会有所波动,而且,调压过程中电压也会略有抖动,因此,考虑在被试侧的低压侧接上稳压器件。负载侧由于变频机组本身具有稳压、稳频功能。所以不需要再接稳压器件。
5)高压保护装置;
  因为两侧都是高压线路,所以在两侧必须装有高压断路器和高压隔离开关,以便电路在异常情况下自动切断线路,也有利于手动控制线路。
3.2 主回路的硬件接线及工作原理
  基于3.1节设计思想主回路硬件接线如图3.1所示:




QF:高压断路器;QS:高压隔离开关;TA:电流互感器;TV电压互感器;TB:调压器;T:变压器;FU:熔断器


  本系统采用双路高压,一路为被试机(M1)供电,一路为作为负载用的负载电机(M2)供电。值得注意的是,在进行负载试验时,负载能量经电源机组、调压器回馈到低压侧电网。具体为:负载电机与被试电机同轴联接,通过电源机组调节负载电机的转速,使被试电机与负载之间形成一定的转速差,即使负载电机的频率f<50HZ,处于发电状态,从而为被试电机加了负载,改变变频机组的输出频率,即可改变被试电机的负载大小。由于M2以发电机方式运行,则产生的电能通过电源机组经调压器回馈至电网。因此,从整个系统角度来看,系统消耗的能量主要为系统内各电机的损耗。所以,本系统具有运行效率高的优点。值得注意的是,要限制变频机组的频率变化范围,以防被试电机过载。在本系统中拟定输出的变频范围为 8~50Hz。
  在主回路中,如被试电机在电动机状态工作时,首先在低压下让其旋转方向相同, 启动负载电机,将其电源频率和电压调到额定值左右,随即被试电机通电,调节电压至额定值,然后降低负载电机的电源频率,让被试电机逐渐加负载至额定值,负载电机作发电运行,直至被试电机达到热稳定状态。接着在满足功率调节范围在1.25~0.25PN内用变频电源平滑调节被试电机的负载, 测取数据的过程中,被试电机应保持频率和电压不变;辅助电机应保持额定电压不变。

3.3主回路相关设备的选择

一、高压试验对调压器的基本要求
  高压试验必须有一个能满足技术标准要求的可调试验电源。通常在高压试验变压器的前级选配合适的调压器,借助调压器的电压调整,使高压试验变压器输出满足要求的、无级连续、均匀变化的试验电压。高压试验配用的调压器,除了其输出容量、相数、频率、输出电压变化范围等基本参数应满足试验要求外,还要求调压器应具有以下性能。
  1)输出电压质量好 如要求调压器输出电压波形应尽量接近正弦波;输出电压下限好为零;有些场合还要求输出电压与输入电压相位相同。
  2)调压特性好 如要求调压器阻抗不宜过高;调压特性曲线平滑线性;调节方便、可靠。
  3)环境保护好 如要求调压器运行噪声小。
二、调压器和变压器的选择
  高压试验用调压器,一般采用移圈调压器、感应调压器和接触调压器三种类型。在本系统中采用柱式接触调压器。
  柱式接触调压器是一种输出电压连续可调的自耦变压器。它具有输出电压波形正弦性好,输出电压下限可以为零,调压特性平滑、连续、线性;短路阻抗可以控制在较小范围内,运行噪声小以及输出电压与输入电压相位基本相同等优点,是一种比较理想的高压试验用调压器。

图3中主回路进线电压为380V,但是高压侧电机的额定电压为10KV,必须通过调压器和升压变压器才能达到高压,拟定调压范围为1KV~12KV,通过调压器使其电压在40~600V范围内变化,升压变压器的变比为0.4KV~10KV。值得说明的是,调压器和变压器只分别给出了调压范围和变比,没有选择实际的型号。实际运用时必须按标准选择型号。


联系方式

  • 地址:上海松江 上海市松江区石湖荡镇塔汇路755弄29号1幢一层A区213室
  • 邮编:201600
  • 联系电话:未提供
  • 经理:聂航
  • 手机:15221406036
  • 微信:15221406036
  • QQ:3064686604
  • Email:3064686604@qq.com