6ES7222-1HF22-0XA8厂家供应
其电气控制系统采用继电器及接触器构成,控制手段比较落后,控制效果完全取决于操作工经验和精神状态,各道工序间连贯性差,费时又费力,故障率较高且维修困难,影响了生产效率。因此,有必要进行技术改造。PLC控制具有可靠性高、柔性好、开发周期短等优点,特别适合于机床控制和故障自诊断系统,可以大大减少继电器等元器件的数量,提高电气控制系统的稳定性和可靠性,从而,用PLC控制系统替代体积大、投资大、耗能大的继电器是电气控制系统发展的趋势。鉴于上述原因,我们利用PLC技术对原有电气系统进行了全面技术改造。
2.系统功能
轻轨精整PLC智能控制系统包含铣床和钻床控制,实现的基本功能如下:
(1) 切换功能:可实现手动与自动控制的切换。在通常情况下使用自动档,当需要检修或调试的时候,切换到手动档。
(2) 自动报警功能:发生异常情况,可随时报警。当夹紧头快下、动力头快进、动力头工进以及动力头快退四个部分中任何一段出现异常情况时,与之相应的声光报警就会动作,让现场工作人员迅速采取措施,避免或减少事故所造成的损失。
(3) 自动记忆功能:配有“停车”及“继续运行”按钮。当工作过程中出现某些问题需要暂停运行时,按下“停车”按钮后,机床停止运行,各部分均停留在原处不动。再按下“继续运行”按钮,则机床继续运行。
(4) 紧急停车复位功能:配备有“紧急停车复位”按钮。当在工作过程中发生异常,或中途突然停电后恢复时,按下此按钮使机床各部件回到加工前的初始状态。
为实现上述功能,需要对运行过程进行智能判断,进行相应的控制。同时考虑到PLC的运算功能的限制,需要加入故障诊断模块,并进行相应的显示。
3. 系统组成
PLC选用三菱公司的FX2N系列可编程序控制器实现[1],由可编程序控制器构成的轻轨精整智能控制系统结构如下:
图1. 轻轨精整智能控制系统结构图
该系统有输入、控制运算和输出三大部分组成。
1)输入部分包括操作按钮和信号检测两部分。
a.操作按钮用来人工设置参数或进行手动操作,处理紧急情况。
b.信号检测是由传感器自动监测生产线上机床的工作情况,一旦出现异常情况,马上报警提示操作者,以进行相应的故障处理,如紧急停机处理等,从而避免事故的发生。
2)控制运算部分
控制运算部分主要由PLC来完成,由控制系统的应用软件来完成信号的输入、处理、控制输出的主要功能。
3)输出部分包括报警装置、输送和动力装置、固定装置
a.报警装置由闪烁的红、黄、绿三种颜色灯和报警铃声构成,三种颜色分别对应三种不同报警级别。绿色表示系统正常,黄色表示系统参数超范围,但仍能工作,需要进行处理;红色报警并伴随报警声音,必须紧急停机处理。
b.输送装置由PLC输出的信号控制主电路,给电机发送指令,让其自动完成原料的传送与动力传送。
c.液压装置是固定装置,由PLC控制器给定的信号,经电磁阀控制液压设备,将原料固定在某一位置,为原料加工服务。
4.系统软件设计
4.1 PLC软件设计考虑的问题
利用梯形图编制控制程序,在 PLC软件设计中要考虑以下几个问题:
(1) 强电关断优先原则:在铣床软件设计中,只要控制信号中有强电关断的信号,则不管其它信号如何都要关断强电。如图2所示,只要关断信号XO2=1,则中间继电器 M100 都要被关断。 (2) 动作互锁原则:有些控制不能同时动作,就要进行互锁。如主轴正、反转控制,图 3为主轴互锁控制示意图,任何一个回路启动后必须同时关断另一 个回路,从而保证两者不能同时动作。
图2
图3
(3) 顺序联锁控制原则:即有些控制要求次序不能颠倒,这就要求前一个动作常开触点串在下一个控制动作中,同时将后一个动作中的常闭触点串在上一动作的控制回路中,如图4 所示。
图4
影响PLC控制系统的因素很多,只要我们在软件设计时充分考虑到各方面因素,就可避免出现故障,控制系统的运行就会更加稳定 [2] 。
4.2 PLC基本控制程序设计
具体铣床控制功能框图如图5所示,钻床控制功能与之类似。
图5. 铣床控制顺序功能框图
4.3 故障诊断模块的程序设计
对于PLC系统,由于内存资源有限,复杂的智能诊断难于实现,为此加入了故障诊断智能模块,该模块以单片机为基础,采用C51编程,可方便实现各种控制算法。
采用故障树推理与专家经验规则推理相结合的方法,利用智能模块的I/O功能及内部信息进行故障诊断。[3][4]
(1) 故障结构分析
在进行故障诊断设计时,首先必须对整个系统可能发生的故障进行分析,得到系统的故障层次结构,利用这种层次结构进行故障诊断部分的设计。图6为系统的故障层次结构。
图6. 故障层次结构框图
(2)程序设计
系统故障结构的层次性为故障诊断提供了一个合理的层次模型。在进行系统的程序设计时,应充分考虑到故障结构的层次,合理安排逻辑流程。在引入故障输入点时应注意两点:
a. 必须将系统所有可能引起故障的检测点引入PLC,这主要是从系统的安全可靠运行考虑,以便系统能及时进行故障处理;
b. 应在系统允许的条件下尽可能多的将底层的故障输入信息引入PLC的程序中,以便得到更多的故障检测信息为系统的故障自诊断提供服务。
5.结束语
经过在线调试和工业试验运行阶段后,该控制系统已于2004年正式投入运行,运行以来,效果良好,实现了预定的控制功能要求,克服了继电器、接触器控制带来的局限,避免了原控制系统辅助元件多、故障率高、工作噪声大、控制方式单一、维护困难等问题。手动与自动切换方便,抗干扰能力强,适合钢厂生产线的恶劣的工作环境,且易于计算机通讯,实现网络监控。
本文作者创新点:将PLC和单片机结合,设计了用于轻轨精整钻、铣床设备的控制系统,并使之具有故障诊断和报警功能,系统结构简单,操作方便。
1. PID控制
在工业控制中,PID控制(比例-积分-微分控制)得到了广泛的应用,这是因为PID控制具有以下优点:
1)不需要知道被控对象的数学模型。实际上大多数工业对象准确的数学模型是无法获得的,对于这一类系统,使用PID控制可以得到比较满意的效果。据日本统计,目前PID及变型PID约占总控制回路数的90%左右。
2)PID控制器具有典型的结构,程序设计简单,参数调整方便。
3)有较强的灵活性和适应性,根据被控对象的具体情况,可以采用各种PID控制的变种和改进的控制方式,如 PI、PD、带死区的PID、积分分离式PID、变速积分PID等。随着智能控制技术的发展,PID控制与模糊控制、神经网络控制等现代控制方法相结合,可以实现PID控制器的参数自整定,使PID控制器具有经久不衰的生命力。
2. PLC实现PID控制的方法用PLC对模拟量进行PID控制时,可以采用以下几种方法:
1)使用PID过程控制模块。这种模块的PID控制程序是PLC生产厂家设计的,并存放在模块中,用户在使用时只需要设置一些参数,使用起来非常方便,一块模块可以控制几路甚至几十路闭环回路。但是这种模块的价格昂贵,一般在大型控制系统中使用。如三菱的A系列、Q系列PLC的PID控制模块。
2)使用PID功能指令。现在很多中小型 PLC都提供PID控制用的功能指令,如FX2N系列PLC的PID指令。它们实际上是用于PID控制的子程序,与A/D、D/A模块一起使用,可以得到类似于使用PID过程控制模块的效果,价格却便宜得多。
3)使用自编程序实现PID闭环控制。有的PLC没有有PID过程控制模块和 PID控制指令,有时虽然有PID控制指令,但用户希望采用变型PID控制算法。在这些情况下,都需要由用户自己编制PID控制程序。
3. FX2N的PID指令
PID指令的编号为FNC88,如图6-36所示源操作数[S1]、[S2]、[S3]和目标操作数[D]均为数据寄存器D,16位指令,占9个程序步。[S1]和[S2]分别用来存放给定值SV和当前测量到的反馈值PV,[S3]~[S3]+6用来存放控制参数的值,运算结果MV存放在[D]中。源操作数[S3]占用从[S3]开始的25个数据寄存器。PID指令是用来调用PID运算程序,在PID运算开始之前,应使用MOV指令将参数(见表6-3)设定值预先写入对应的数据寄存器中。如果使用有断电保持功能的数据寄存器,不需要重复写入。如果目标操作数[D]有断电保持功能,应使用初始化脉冲M8002的常开触点将其复位。
PID指令可以同时多次使用,但是用于运算的[S3]、[D]的数据寄存器元件号不能重复。
PID指令可以在定时中断、子程序、步进指令和转移指令内使用,但是应将[S3]+7清零(采用脉冲执行的MOV指令)之后才能使用。
控制参数的设定和 PID运算中的数据出现错误时,“运算错误”标志M8067为 ON,错误代码存放在D8067中。
PID指令采用增量式PID算法,控制算法中还综合使用了反馈量一阶惯性数字滤波、不完全微分和反馈量微分等措施,使该指令比普通的PID算法具有更好的控制效果。
PID控制是根据“动作方向”([S3]+1)的设定内容,进行正作用或反作用的PID运算。PID运算公式如下:
以上公式中:△MV是本次和上一次采样时PID输出量的差值,MVn是本次的PID输出量;EVn和 EVn-1分别是本次和上一次采样时的误差,SV为设定值;PVn是本次采样的反馈值,PVnf、PVnf-1和PVnf-2分别是本次、前一次和前两次滤波后的反馈值,L是惯性数字滤波的系数;Dn和Dn-l分别是本次和上一次采样时的微分部分;K p是比例增益,T S是采样周期,T I和T D分别是积分时间和微分时间,αD是不完全微分的滤波时间常数与微分时间TD的比值。
4.PID参数的整定
PID控制器有4个主要的参数K p、T I、T D和T S需整定,无论哪一个参数选择得不合适都会影响控制效果。在整定参数时应把握住PID参数与系统动态、静态性能之间的关系。
在P(比例)、I(积分)、D(微分)这三种控制作用中,比例部分与误差信号在时间上是一致的,只要误差一出现,比例部分就能及时地产生与误差成正比的调节作用,具有调节及时的特点。比例系数K p越大,比例调节作用越强,系统的稳态精度越高;但是对于大多数系统,K p过大会使系统的输出量振荡加剧,稳定性降低。
积分作用与当前误差的大小和误差的历史情况都有关系,只要误差不为零,控制器的输出就会因积分作用而不断变化,一直要到误差消失,系统处于稳定状态时,积分部分才不再变化。因此,积分部分可以消除稳态误差,提高控制精度,但是积分作用的动作缓慢,可能给系统的动态稳定性带来不良影响。积分时间常数T I增大时,积分作用减弱,系统的动态性能(稳定性)可能有所改善,但是消除稳态误差的速度减慢。
微分部分是根据误差变化的速度,提前给出较大的调节作用。微分部分反映了系统变化的趋势,它较比例调节更为及时,所以微分部分具有超前和预测的特点。微分时间常数T D增大时,超调量减小,动态性能得到改善,但是抑制高频干扰的能力下降。
选取采样周期T S时,应使它远远小于系统阶跃响应的纯滞后时间或上升时间。为使采样值能及时反映模拟量的变化,T S越小越好。但是T S太小会增加CPU的运算工作量,相邻两次采样的差值几乎没有什么