西门子模块6ES7253-1AA22-0XA0常备现货
西门子模块6ES7253-1AA22-0XA0常备现货
可编程讨算机控制器(PCC )是一种集标准PLC 、数控系统和工业控制计算机的性能特点于一体的智能控制器,它有极广泛的工业自动化应用前景。本文展示了PCC 智能控制器在物料输送自动化方面的应用实例。
由贝加莱(B&R)公司和安博(ABUS)公司合作开发的首套全自动控制轻型标准组合起重机系统在中国工业领域的应用已获成功。该系统的先进技术和方便可靠的使用功能已获得用户十分满意的评价。本文将通过一个实例,作详细介绍
系统的硬件设备
首先,该起重机系统采用了贝加莱(B&R)公司的PCC工业智能控制器和安博(ABUS )公司的轻型起重机标准组件系统HB 作为其硬件设备。这是因为人们满足了以下的基本要求,并具有一般意义上的应用前景。
l 、模块化和标淮化
B&R PCC 智能控制器,采用了模块化硬件,使它成为开放式的和具有灵活扩展性能的自动控制系统。它拥有大量的硬件模块,如数字量/模拟量模块,电源模块,CPU 模块,定位模块,接口模块,内存模块等等。它还拥有众多的专家级模块,如数控模块,温控模块,网络模块等这使得理B&R PCC 智能控制器不仅在工业制造过程的自动控制方面有着广泛的应用,同时也能直接与传统的起重设备相组合,使其同时具备相应的手动、电动和全自动控制的功能。
作为物料输送设备硬件的ABUS HB 系统,是一个轻型起重机标准组件系统,它采用了模块化的标准组件,可以根据工艺流程的需要,由各个标准组件组合成各类轻型起重机,如单轨式、双轨式、三轨式、单梁式、双梁式起重机(压题图为ABUS HB 轻型起重机标准组件系统,上图为双轨起重机,下图为双梁起重机)可满足各种各样厂房内平面或线性物料输送的需要。由该系统构造的各类组合起重机的结构也是开放式的,可以根据工艺和物流要求增减和改变起重机的设置。这使得该系统比通常的由H 型轨/工字轨构成的轻型起重机具有更好的灵活性。它在输送控制方面,可以根据实际需要,分别或者同时采用手电门控制和全自动控制。
2 、开放性和兼容性
工业设备的开放性和兼容性要求加工设备和物料输送设备以及控制系统都必须能够适时扩展,增补、修改其已有的功能,兼容和学习新的功能(不论是空间上的还是时间上的)以便满足其产品不断更新换代进而适应市场变化的要求。比如B&R PCC 作为智能控制器,软件上就具备分时多任务操作系统。其开发、编程语言众多,如语言(C )、梯形图、指令表等,并有许多功能函数模块可供调用。它可以采用多种方式(例如CAN , PROFIBUS , ETHERNET 方式为网络协议建立现场层、控制层和管理层)实现真正的自动化网络。它除了能实现PCC 系列产品间的自由扩展和互联外,还能方便地实现与其它品牌控制器的互联。
由于ABUS HB 标准组合起重机采用的是一种柔性悬挂系统,其组合起重机的轨道和横梁都为标准的Ω型钢,起重机的悬挂部件和行走机构都为组合模块,整个起重机系统可以根据物流需要,重新组合、更换、增减和改变。因此,它具有很好的开放性,以及兼容其他同类组合系统的特性。
应用实例
1 .物料输送过程描述
某轻型起重机的作用是,以一定的顺序,在规定的时间里,连续的将工件送入特定位置上的若干处理池内,进行加工处理(图1 )。工件的移动是三维空间上的位置移动。根据加工工艺的要求,马达1 , 3 和4 同时具备手电门手动控制/全自动控制功能,马达2 只需具备手电门手动控制功能。
图1 物料输送流程图
2 .控制模式
(1) 手动控制模式
手动控制模式是通过常规的手电门地面操作来完成的。手电门直接连接在起重机机身上,其按键可控制起重机的前后,左右运行以及起吊工件上下的运行。起重机每个马达都具有快慢双速调节速度功能。手电门上还有急停按键。
(2) 自动控制模式
自动控制模式由PCC 控制系统来实现,其系统的用户接口包括:
·按键开关(自动和手动的转换开关)
·急停按键
·LCD 显示器
·8 个带灯按键
用户可以通过带灯按键和LCD 显示器输入若干套控制参数(本例共为10 个站),其中需首先给定:
处理池号i,即容器的编号(i﹦1 , 2 ,… … ,10 表示结束)
时间Ti ,即起重机运行的时间(j﹦1,2 ,… …,表示起重机不同动作的时间)
3 .用户接口设置
用户接口的设置,是PCC 控制系统根据工艺流程的要求应首先考虑的,如本实例中,设T1﹦工件吊下的时间;T2﹦工件在池中的停留时问;T3﹦工件到下一池站的时间,则根据加工工艺要求,将用户接口设置综述如下表。
用户接口设置表
系统可按表1 完成如下几个工艺流程(图2)
图2 工艺流程实例
(1)在起始位置吊起工作。先按下用户接口上的按钮或手动控制盒的一个确定的按钮,即启动键,确定起重机开始执行该工艺控制程序。
(2)当工件到达确定位置时,起重机将工件送入池中(见表1 中站1 : T1 )
(3)起重机在指定的处理池位置等待工件的处理(见表1 中站1 : T2 )
(4)起重机将处理过的工件送入下一个指定的池中进行下步处理(见表1 中站1 : T3 )
(5) 起重机和工件位于结束位置,表示程序已执行完毕,用户可以通过用户接口或控制盒上的按钮重新开始新一轮的加工过程。
4 .控制界面菜单的构成(略)
5 . 控制方案图解
自动控制方案的设计优化,需要理论与实践两方面的经验积累。在本实例中的自动控制方案可以通过图3 完整地表述出来。
图3 本实例中的自动控制方案图解
6. PCC 控制系统的组成
本实例中的PCC 控制系统由以下三部分组成:
· HMl (用户接口),它是位于PCC 控制系统与起重机控制系统之间的界面。
· CPU 站,此站置于人机界面旁。
· 输入/输出站,它安装在起重机上,通过现场总线与控制系统CPU 站相连。
7. 马达连接和位置开关
传统的方法是马达直接和手动控制的手电门直接相连,通过手电门上的按键控制马达的快速/慢速和转向。反映到起重机运行上则为前后,左右运行和起吊重物的上下运行,并都具有快慢双速的速度调节功能。其控制电压可220V / 48V 。而PCC 的马达控制连接,为了和PCC 控制器相连和起重机同时具备手电门操作和全自动控制功能,马达的控制配线须更换,并加入输入输出站(图4)
图4 手电们/全自动控制时的马达连接
为了在自动控制模式下得出起重机的确切位置,还需有2个水平限位开关须与起重机相连,其中:
开关1 :该开关只有在起重机位于起始位置上时才开;
开关2 :起重机每经过一个处理池,该开关负责传送给PCC控制器一个控制信号。
另外,在自动控制模式下起重机还需要一个起升限位开而关。该开关的作用是,在起重机起吊工件每上升到一个确定的位置,使工件离开处理池时,它都会给PCC 控制器发出一个控制信号。
1 引言
筛焦系统主要是将熄焦后的焦炭由熄焦车放入焦台,经冷却和补充熄焦后,由刮板放焦机切至带式输送机上,再由下方带式输送机送入筛贮焦槽,经过三级筛分,焦炭以大于25mm,10~25mm,0~10mm的粒度分别入槽。筛焦槽内的焦炭可直接装火车外运,或经带式输送机送到炼铁旧有带式输送机上。筛焦工段主要由焦台、刮板放焦机、输送皮带、转运站、筛焦楼等组成。
筛焦系统要求实现生产过程中各设备的顺序逻辑控制,主要是对系统的选择、切换、起点、终点的确定以及对系统的运行进行控制和管理。通信功能实现与上位机和旧有运焦系统的通信。为此,我们建立一个基于工业控制计算机和PLC的筛焦过程控制系统,由网络操作站和控制站。网络操作站主要实现过程的实时监视和管理,控制站由S7-300 PLC控制器构成,采用STEP7 V5.1编程软件进行程序设计,解决设备的联锁启动和现场突发事件的及时处理。本文主要介绍PLC在筛焦过程控制中的应用。
2 控制系统的结构设计
整个筛焦系统设备多而且分散,加上筛焦车间粉尘较多,工作环境十分恶劣,因此必须选用抗干扰能力较强的PLC来实现对底层设备的控制。控制系统由上位监控机、PLC主站、控制模块和现场设备层组成。
在设计中采用S7-300系列PLC控制器。S7-300是模块化中小型PLC系统,它能满足中等性能要求的应用。模块化、无风扇结构使系统构成灵活,易于实现分布,易于用户掌握。因此,采用S7-300作为筛焦系统实现复杂顺序控制,解决设备的联锁启动问题,实现对开关量输入、输出信号的处理以及与旧有系统的通信。
筛焦工段共有的控制点数:数字量输入160点;数字量输出64点。根据控制点数及要求中央处理单元选用CPU 315-2DP,利用筛焦工段CPU内部的DP接口与地面站系统CPU的DP接口将两套系统相连,共用一个操作站,使用接口模块IM 360扩展为3个机架。
筛焦系统共有10个数字量输入模块,4个数字量输出模块,一个通信卡CP 341,以及一个配合电子皮带秤使用的CP 341通信处理器。利用CP 341从CF-900B微电脑皮带秤仪表采集数据,CF-900B电子皮带秤通过其上的微传感器得到称重的瞬时值和累计值,以脉冲的形式将数据打包送至CP 341,CP 341接收到数据后上传至上位机显示。
采用国际通用的PROFIBUS-DP现场总线标准协议与上位机进行通信,与旧系统之间进行点对点(PTP)通信。图1为筛焦系统网络结构图。
图1 筛焦系统网络结构图
3 控制系统软件设计
为了保证筛焦系统的正常、可靠运行,该系统应满足以下控制要求:
(1) 有中央联动运转(自动)和机侧单独运转(手动)两种控制方式;
(2) 各个设备在启动和停止过程中,要根据设备启动或停止时间合理设置时间间隔(延时),以保证无堆料、压料的情况;
(3) 运行过程中,某一台设备发生故障时,其上流设备立即停止,下流设备延时净化停止;
(4) 实现与旧有运焦系统的通信;
(5) 可显示各条料线的运行情况,并对报警,开关机时间,上煤量等做出实时记录。
3.1 系统设计思路
在整个系统中,采用工业控制计算机作为上位机,它与下位机(PLC)进行通信,对设备的运行情况进行实时采样,并在屏幕上显示系统的仿真画面,兼作故障报警、报表等。在上位机的操纵画面上选择不同的运行方式和工作状态,结果送入PLC。下位机根据上位机发出的命令,执行对应的功能块,在控制各个设备运行的同时,向上位机发送工作组态信息,接受上位机的命令信号,实现事故停车处理功能并启动报警设备,快速响应中央操作室内的“紧急停车”指令。这样,上位机与PLC相互配合,实现整个筛焦系统的监测和控制功能。
3.2 系统控制程序的开发
采用软件STEP7 V5.1对筛焦控制系统进行设计和编程。STEP7是一个对S7-300和S7-400PLC进行编程的应用软件包,除了可以编制S7程序块以外,还可以设定各种参数、在线监测、查询故障等。本系统采用模块化编程,根据工艺流程,按照不同的联锁关系组成多种运行方式,在集控室集中联锁控制设备运转。在编程实现的过程中又可根据运行方式的不同编写不同的功能(FC),然后在组织块(OB1)中,调用各个功能(FC),从而满足不同控制要求。
在筛焦生产过程中,根据工艺流程分为筛焦前控制系统和筛焦后控制系统,每一个系统又按照不同的起点、中间点、终点将作为一种运行方式来划分,共有14种运行方式,每种运行方式都有“集中启动”,“净化停止”,“一齐停止”三种工作状态。
图2 控制程序框图
集中启动要求设备都处于“中央操作”时才可以联锁启动。这就需要在设备启动之前判断该料线设备是否准备就绪、设备启动的联锁条件是否满足。若设备都处于 “准备好”状态,就可以在上位机向PLC发出命令,首先是响起预示信号,启动被选择的除尘设备。为防止皮带压料的情况,要求经延时后按顺序逆料流启动该料线上的设备,设备启动后,送给上位机设备的“运转信号”,进行动态监视。设备启动起来,上位机得到“运转信号”,上位机的流程画面上就可以进行实时监视。
完成任务后,系统需停止工作,上位机发出“净化停止”命令,结果送入PLC控制器中,调用相应的净化停止FC。由于皮带不能堆料所以要按照顺料流方向延时停止,经过一段的净化时间后,所有的设备才一齐停止,后停止除尘系统。这样系统处于停止中,设备运转指示消去,等待下一次的启动命令。
针对突发事件,需要在较短的时间内迅速停下所有的设备时,上位机发出“一齐停止”命令。结果送入PLC中,调用相应的一齐停止功能块,使设备全部停止,系统处于停止中,设备运转指示消去,等待下一次的启动命令。
操作室控制面板上还设有一个“紧急停止”按钮,当需要紧急停止整套设备(包括预示信号)时,操作该按钮,系统实现立即停止,同时启动“报警指示灯”和“预警响铃”。
3.3 编程方案
在筛焦系统过程控制中,不同的运行方式之间存在一定的互锁关系。编程实现过程中把方式之间的锁定放在主程序中处理,即当选择了某种方式之后,其他的一些方式将处于无效状态。然后根据上位机的选择进入功能块FC中。现以图3说明如何在主程序中实现集中启动,净化停止和一齐停止的调用。
图3 系统逻辑框图
在被调用的FC中,首先进行的是同一料线的三种工作状态的锁定,当所有的设备都启动或停止完毕,当前工作状态复位,使另外两种状态有效,等待下一次的命令。
故障处理放在集中启动FC中进行,设备启动过程中发生的任何故障都可在FC中及时进行处理。故障处理完毕,复位故障位,等待下一次的集中启动。若联锁系统上发生重故障的话,该设备停止,其上流设备一齐停止,下流设备经过一段净化时间后一齐停止。遵循这条原则进行设备的故障处理设计。
4 结论
利用PLC作为下层控制器,工业控制计算机作为上位监测装置,二者互相配合共同实现了整套筛焦系统预期的控制效果,各项技术指标也达到了设计要求。
一、编程设备:
简单的为简易编程器,多只接受助记将编程,个别的也可用图形编程(如日本东芝公司的EX型可编程控制器)。复杂一点的有图形编程器,可用梯形图语编程。有的还有专用的计算机,可用其它语编程。编程器除了用于编程,还可对系统作一些设定,以确定PLC控制方式,或工作方式。编程器还可监控PLC及PLC所控制的系统的工作状况,以进行PLC用户程序的调试。
二、监控设备:
小的有数据监视器,可监视数据;大的还可能有图形监视器,可通过画面监视数据。除了不能改变PLC的用户程序,编程器能做的它都能做,是使用PLC很好的界面。性能好的PLC,这种外部设备已越来越丰富。
三、存储设备:
它用于性地存储用户数据,使用户程序不丢失。这些设备,如存储卡、存储磁带、软磁盘或只读存储器。而为实现这些存储,相应的就有存卡器、磁带机、软驱或ROM写入器,以及相应的接口部件。各种PLC大体都有这方面的配套设施。
四、输入输出设备:
它用以接收信号或输出信号,便于与PLC进行人机对话。输入的有条码读入器,输入模拟量的电位器等。输出的有打印机、编程器、监控器虽也可对PLC输入信息,从PLC输出信息,但输入输出设备实现人机对话更方便,可在现场条件下实现,并便于使用。随着技术进步,这种设备将更加丰富。
PLC的容量划分为I/O点数和用户存储容量两个方面。
(一)I/O点数的选择
PLC平均的/O点的价格还比较高,因此应该合理选用PLC的I/O点的数量,在满足控制要求的前提下力争使用的I/O点少,但必须留有一定的裕量。
通常I/O点数是根据被控对象的输入、输出信号的实际需要,再加上10%~15%的裕量来确定。
(二) 存储容量的选择
用户程序所需的存储容量大小不仅与PLC系统的功能有关,而且还与功能实现的方法、程序编写水平有关。一个有经验的程序员和一个初学者,在完成同一复杂功能时,其程序量可能相差25%之多,所以对于初学者应该在存储容量估算时多留裕量。
PLC的I/O点数的多少,在很大程序上反映了PLC系统的功能要求,因此可在I/O点数确定的基础上,按下式估算存储容量后,再加20%~30%的裕量。
存储容量(字节)=开关量I/O点数×10+模拟量I/O通道数×100
另外,在存储容量选择的同时,注意对存储器的类型的选择。