西门子模块6ES7223-1PL22-0XA8规格说明
西门子模块6ES7223-1PL22-0XA8规格说明
1 引言
锅炉在运行过程中,其各部分受热面都会积灰,积灰不仅会影响受热面管壁的传热效果,严重时还会形成结焦,影响受热面的寿命,甚至损坏受热面,因此,在大型锅炉上均设有吹灰器,用来定期清扫锅炉水冷壁、过热器、再热器、省煤器和空气预热器等受热面上的积灰和结渣。吹灰器可提高主蒸汽出温度,降低锅炉排烟温度,在一定蒸汽压力进行吹灰,使结在锅炉过热器、省煤器内壁的结焦及结炭得到清除,恢复传热系数,提高效率1%左右。
大型锅炉使用多个吹灰器, 要求顺序操作,采用继电器控制锅炉吹灰器,故障率高,可靠性差,维修困难,而采用PLC可靠性高,控制灵活,易于实现。
2 吹灰器分布控制方式的比较
吹灰器分布控制方式分为独立式分布控制和集中式分布控制。
图1 吹灰工艺流程图
(1) 独立式分布控制方式
每个吹灰器都有各自的正、反转接触器,过载,前、后行程开关,由于各有自己的控制系统,单个吹灰器的投运不受其它吹灰器是否运行的影响,控制灵活。但锅炉的吹灰器需使用多个接触器、继电器、电流变送器等元器件及输入输出通道和卡件、电缆,使得控制装置复杂;
(2) 集中式分布控制方式
若干吹灰器组成一组,每组吹灰器共用一组正反转接触器和过载继电器,而每个吹灰器又各有一个接触器和前、后行程开关,所有前行程开关合并为一个信号,所有后行程开关合并为一个信号,输入可编程控制器。
采用集中式分布控制方式可以节约多个器件、卡件、大量电缆,节省控制柜空间。但由于一组吹灰器用一对方向接触器和一个过载继电器,一旦方向接触器出现故障或过载继电器动作,整组吹灰器就不能工作。又因行程开关信号合并在一起,若行程开关故障或信号线短路,不容易确定哪个吹灰器,需逐一检查。故吹灰器在运行前必须保证无其它吹灰器在运行,即同时只能投运一台吹灰器,降低了效率。
比较分析吹灰器的两种分布控制方式的特点,综合独立分布控制方式和集中分布控制方式的优点,将多台吹灰器分成若干组,每组采用集中分布控制,同时把各组的母管从系统母管中引出,且尽量靠近总管压力控制器站,有助于在同时投运多台吹灰器时减少压力损失。实际应用中,将吹灰器分为左右两侧,同侧吹灰器公用一个前行程开关信号和一个后行程开关信号;因长吹和短吹的电动机功率不同,在电气控制上又把每侧分成长吹和短吹两组,每组公用一对方向接触器和一个过载继电器。这样既节省了投资成本,又灵活控制,提高了效率。
3 锅炉吹灰器的PLC控制
锅炉的吹灰装置有8台吹灰器,吹灰系统采用集中式分布控制,选用FX2-64M型号的PLC,要求实现手动和自动控制。
接通电源后,若将转换开关置于手动位置,就可对单台吹灰器遥控操作或就地控制。当吹灰管路压力正常和疏水端温度高于设定值时,将转换开关转到自动位置,吹灰器就按事先编制的程序,逐台投入运行。在运行中,若发生电动机过载、疏水端温度低于设定值时及管路蒸汽压力低的故障时,会自动停机。故障解除后,按故障复位按钮才能继续运行。如果初始状态的管路蒸汽压力偏低,或者疏水端温度偏低,或者吹灰器不处在初始位置,无论处于手动或自动位置,吹灰器均不能运行。
(1) 操作程序工艺流程
可编程控制器的输入量为开关、限位开关、热元件等,输出量为电磁阀、接触器、指示灯。吹灰器的操作程序工艺流程如图1所示。
(2) PLC控制系统的程序设计
锅炉吹灰器采用集中式分布控制,8台吹灰器的前、后行程开关信号分别合并为一个信号,接PLC的输入,用一对方向接触器控制吹灰器的前进和后退,每一个吹灰器都由其本体接触器控制它的运行,用一个热继电器控制吹灰器电机的过载。系统设有管路蒸汽压力、疏水温度检测、选跳吹灰器运行输入信号。PLC的输出信号接接触器线圈,PLC输入输出接线如图2所示。
设计程序时将输入信号送移位寄存器,经过定时器的作用,实现移位脉冲的输入,使吹灰器顺序投入运行,吹灰器之间互锁,只有当上一吹灰器运行结束,退到位后,下一吹灰器才能运行。自动停止按钮使移位寄存器停止移位,顺序复位按钮使移位寄存器复位,故障排除后,按下故障复位按钮,移位寄存器恢复功能。
4 结束语
采用PLC实现锅炉吹灰器的集中式分布控制,节约了接触器、继电器、卡件、电缆线等器件和材料,简化了控制线路,节省了装置空间。减少了故障率,提高装置运行的可靠性
本文介绍了采用气动元件的物料搬运系统的结构、气动系统及其PLC控制系统。物料的搬运方式具有可抓可吸的多用途功能;气动系统电磁换向阀采用汇流板集装方式,减少了占用空间;PLC控制具有单步、自动等多种工作方式。
由于气压传动具有气源使用方便、不污染环境、动作灵活迅速、工作安全可靠、操作维修简便以及适于在恶劣环境下工作等特点,因而在冲压加工、注塑及压铸等有毒或高温环境下作业,机床上、下料,仪表及轻工行业中小零件的输送和自动装配等作业,食品包装及输送,电子产品输送、自动插接,弹药生产自动化等过程中被广泛应用。所以气压传动是一种易于推广普及的实现工业自动化的应用技术。气动系统的应用,引起了产业界的普遍重视,气动行业已成为工业国家发展速度快的行业之一。
作为气动系统的控制装置目前多数采用可编程控制器(PLC)。可编程序控制器是以微处理器为基础,综合计算机技术,自动控制技术和通讯技术而发展起来的一种新型、通用的自动控制装置,其可靠性好,操作简便。在实际应用中,控制系统很容易实现。一般是由受控设备的动作顺序和工艺要求,构成工步状态表,形成梯形图,再编制PLC指令。
一、物料搬运系统结构设计
物料搬运系统原理图如图1所示。该系统由左右移动气缸1、复位进退气缸2、升降气缸3、夹手或真空吸盘4、物料块5、传感器6、圆柱导轨7、支架8、底座9、微动开关10等组成。夹手或真空吸盘4可以夹住或吸住物料块5,抓取物料的部分采用夹持式和吸附式两种形式,选用不同的形式,可分别完成工件的抓取和吸附,以适应不同种类的物料搬运。夹手采用电磁铁吸合与断开方式夹持物料。夹手或吸盘在升降气缸3的作用下可以上下移动;夹手或真空吸盘连同升降气缸在左右移动气缸1的作用下沿着圆柱导轨可以左右移动;在复位进退气缸2的作用下将物料块送回原始位置,为下一个工作周期准备,以实现循环。此系统能够实现物料在一个平面内的搬运。左右移动行程为300mm,上下移动行程为80mm,根据行程选择不同的气缸,气缸1、2行程为300mm,气缸3行程为80mm。气缸选用法兰式安装。为了防止工件偏移,在左右移动气缸1运动路径两边安置导向圆柱导轨7,将圆柱导轨用螺钉固定在支架8上;支架用螺栓固定在底座9上。
图1 物料搬运系统原理图
在左右移动气缸1的缸体上安装了两个磁性开关6用于左右极限位置检测;在底座上安装了一个微动开关10用于物料块下限位置检测。
操作面板安装在电控箱上,与实验装置主体是分离的。PLC可编程序控制器,电磁阀,真空发生器等均放置在电控箱里。
二、气动系统设计
气动原理图如图2所示。
图2 气动原理图
气源出来的气体经过二联件处理后进入到汇流板。通过相应的电磁换向阀可进入气动执行元件,分别驱动气缸1的左右移动、气缸2的推料动作、气缸3的上升下降运动、吸盘4的抓料和松料动作。整个气动系统的3个气缸全部采用出气节流调速;电磁阀采用3个二位五通阀和1个二位二通阀。选用集装式电磁换向阀,将所有电磁换向阀由汇流板集装在一起,以减小占用空间。
三、程序流程图及软件设计
实现功能。物料搬运系统具有左右移动、上下移动及对物料的夹紧和放松、推料进退功能,在PLC控制下可实现单步、自动等多种工作方式。另外,物料被夹手搬运完成以后,为满足连续动作需要,还必须将此物料运送回原点位置,以供下次搬运需要。系统可完成的各种工作方式如下。
单步:可实现“上升”,“下降”,“左移”,“右移”,“夹紧”,“放松”,“推料进”,“推料退”等八种点动操作;
连续:按下“启动”按钮后,夹手从原点位置开始连续不断地执行搬运物料的个步。
根据上述任务,先设计主程序框图,如图3所示。
图3 主程序框图
物料搬运系统实现的动作:下降→抓料→上升→右移→再下降→松料→再上升→左移→推料进→推料退。
在这个系统中,我们只实现一个物料的循环动作,故在机械手回原点后,需将物料推回原来位置。
在PLC控制下可实现单动、连续动作工作方式。
系统上电后,通过旋转按扭选择是单动还是连动,如果是单动则执行单动程序,否则执行连动程序。
单动工作方式:利用按钮对夹手每一动作单独进行控制。
连续:按下启动按钮,夹手从原点开始,按工序自动循环工作,直到按下停止按钮,夹手在完成后一个周期的工作后,返回原点,自动停机。如图4所示。
图4 连续动作顺序流程图
四、结论
基于PLC控制的物料搬运系统能够实现物料的自动循环搬运。此系统既可以使用夹手夹持物料,又可以使用真空吸盘吸附物料,具有多种用途功能;气动系统的电磁换向阀采用汇流板集装,减少了占用空间;在PLC的控制下可以实现单动和连动两种执行方式,完成物料的搬运
一、引言
由单片机与继电器等所组成的控制系统寿命短、系统故障率高。我们设计了PLC控制的变频调速供暖系统。该系统可靠性高、稳定性好、抗干扰能力强,在恶劣环境下可连续运行,且编程简单,维护方便。
为了保证供暖系统正常工作,必须使暖气管道中没有空气,即保持管道中的水压恒定。为此,我们选用PLC,配以不同功能的传感器,根据管道中的压力,通过变频器控制泵的转速,使管道中的压力始终保持在合适的范围,并设有过电流、过电压、过载、断水超压等保护装置。系统中有两套相同的装置,一用一备。另外,PLC通过扩展的I/O接口实现控制能力和范围,能解决监测、通讯等问题。
二、控制过程
本系统为PLC实时设备监控系统。对20台循环水泵、16台定压补水泵进行PLC的定时起、停控制,包括主、备用泵(循环水泵、定压补水泵)的定时切换、水泵前端的水流信号检测和报警,水泵过载短路故障报警。
上述36台水泵的电器控制和保护装置分别安装在7面柜中,下面以第1面柜为例详细叙述其控制功能和元件选型。
第1面柜控制两台2.2 kW定压补水泵和三台循环水泵。补水泵工作方式为一用一备,由PLC根据时间进行主、备切换,水泵由变频器驱动,进行恒压控制。即变频器根据管路上的压力变送器输送的压力反馈信号(4~20)mA与设定的压力值比较后进行PID调节输出,驱动定压补水泵工作。PLC则根据时间进行两台泵的切换:具体过程为先使变频器软停车、接到变频器停车信号后分断当前工作水泵的接触器,同时接通备用水泵的接触器,继而启动变频器,完成主、备用泵的切换,其切换时间可根据需要进行设定,两泵的接触器互锁。PLC检测所有接触器的开关状态。
因为变频器具有短路、过载等保护功能,所以当前变频器所驱动的水泵发生上述故障时变频器将自动切断一次供电回路,进入保护状态并输出报警信号。PLC对这些报警信号进行检测,而后进行备用水泵的投入。具体过程为PLC检测到报警信号后首先分断当前水泵的接触器,后对变频器复位,然后接通备用水泵的接触器,启动变频器运行备用水泵。同时输出该泵故障报警信号。
本柜中另外包括3台30 kW循环水泵,工作方式为两用一备,由PLC根据时间进行3台水泵的轮换工作切换。由于循环水泵未采用变频器控制,因此PLC只需对3台水泵的接触器进行按时的分断接通操作即可。电器保护元件采用GV3、GV2电机保护开关。该电机保护开关具有脱扣指示功能,当水泵发生短路、过载等情况时,电机保护器进行脱扣保护并输出报警信号,PLC检测到该信号后切断该泵的接触器并将备用水泵的接触器接通,运行备用泵,同时发出故障水泵的报警指示。PLC同时检测所有水泵接触器的开关状态。
所有循环水泵的出水口都装有水流传感器,PLC检测该水流传感器的输出信号,以判断该水泵启动后是否有水流输出、并进行工作正常指示或不正常报警指示。两台定压补水泵公用一个水流传感器,工作原理同上。
本系统有若干电动调节阀,由控制柜供电、其运行由仪表气候补偿器控制。PLC将对其供电回路控制。当该电动调节阀对应的某个或某几个循环水泵关闭或故障时,该电动调节阀将不能够开启。
系统设置手动/自动转换开关。PLC对该开关的状态实时检测,当选择手动功能时,PLC只进行信号的检测、故障报警和与电动阀的电源回路联锁。所有水泵的开、关和切换、变频器的开、关由手动按钮控制。当选择自动状态时所有控制、报警交由PLC完成。系统的总体示意图如图1所示。
图1 系统的总体示意图
三、系统硬件
图2为系统连接框图。除传感器外,其它硬件均安装在一个配电柜中。PLC不仅要控制循环水泵的起、停,还要间接控制定压补水泵的起、停和报警输出。下面以一个换热站的结构为例进行说明,设P1、P2、P3为三台循环水泵,P4、P5为两台定压补水泵,P6为PLC的报警输出。两台定压水泵公用一台变频器,由变频器直接控制,两泵电器互锁。变频器的起、停控制分为手动和PLC控制。变频器输入有一路压力传感器信号(反馈量),一路电位器信号(参考量),三路开关量(起、停和复位)。有两路输出信号(故障报警和低于5 Hz运行)。手动控制设有两个停止按钮,一个为接触器的分断按钮,一个为变频器的软停车按钮。需要注意的是因为变频器的停车均设为软停车,所以手动停车时应该先按软停车按钮,软停车结束后再分断接触器(时间由实际情况定)。变频器的故障复位信号也设有手动和自动两路输入。每面柜有一套气候补偿器,其输入由外接传感器输入,输出控制电动调节阀,气候补偿器具有声光报警功能。
图2 系统连接框图
水流开关用于检测水泵启动后管路内是否有水流通过,若泵运行为两用一备则每台泵前端安装一个水流传感器、共计3个。或一用一备则两台泵共计安装一个水流传感器。具体工作过程为:PLC启动某台泵后,经过设定的延时,PLC将检测该泵的水流传感器输出信号,若该信号指示无水流动则PLC判定该水泵故障,产生故障报警信号、同时将该水泵断电并将该泵的备用泵投入运行。
当管路压力趋于设定值,变频器工作频率很低,此时水泵的转速非常低,水流开关亦有可能发出无水流信号,这种情况并非故障,PLC将通过检测变频器的低频输出信号来区别(低于5 Hz时变频器输出一路信号)。正常情况下水泵24小时进行自动切换,运行备用泵。
每面柜均设有一个手动/自动转换开关,该转换开关为一个三位选择开关,安装于二次控制回路中。1位为自动,2位为手动,0位为悬空。选1位时,自动指示继电器吸合,PLC检测该继电器状态,执行自动控制程序,由PLC控制所有水泵的起、停的切换、包括变频器的起、停和报警。选2位时,自动指示继电器分断,PLC检测该继电器的状态,执行手动程序,PLC只进行检测报警,此时所有柜面控制按钮由人工通过柜面上的按钮和开关进行水泵的起、停和切换,包括变频器的起、停。需要注意的是在手动状态下PLC仍处于工作状态。选择0位时,此时手动控制电路被切断,不能控制设备。自动指示继电器分断。此时PLC检测到的信号与选择手动时一样,因此PLC执行手动程序,进行故障报警。
每面柜有一个补水电磁阀,电磁阀由对应补水箱内的浮球开关来控制。补水箱内有两个浮球开关,一个处于高位、一个处于低位。通过二者在不同水位的不同的继电器接点输出,经中间继电器来控制电磁阀的开、关和超低水位报警。并设有手动按钮,通过一个两位开关实现手动与浮球控制的切换。选择手动时亦有超低水位报警功能。
四、系统软件
系统PLC软件采用模块化编程,由手动运行模块、自动运行模块和故障诊断与报警输出模块等组成。
1、手动运行模块
按系统的要求,在系统处于手动运行时,PLC只接收各电路保护信号和各传感器信号,并由此判断各工作水泵的运行状态,在出现故障的情况下,输出报警信号。图3为该程序模块的流程图。
2、自动运行模块
按系统的要求,在系统处于自动运行时,PLC要完成的工作有:接收各电路保护信号;接收各传感器信号;定时按顺序对工作水泵和备用水泵进行切换;在出现故障的情况下,输出报警信号。图4是此程序模块的流程图。
3、故障诊断与报警输出模块
在故障诊断与报警输出模块中,程序通过接收到的电路保护信号和传感器信号,根据一定的条件得出诊断结果。如果没有故障,则程序继续执行;如果有故障,则输出报警信号,通知工作人员进行处理。
五、结束语
该系统操作简单,可靠性高,维护方便,并且结构紧凑,动作jingque,是PLC在方便人民生活中的一次成功应用。目前采用的PLC变频供暖系统在乌鲁木齐南市区使用一年多来无故障发生,是一种理想的供暖系统。
- 西门子SB1223 数字量信号板模块6ES7223-3BD30-0XB0
- 西门子SB1223 数字量信号板查模块6ES7223-3AD30-0XB0
- 西门子SB1223数字量信号板模块6ES7223-0BD30-0XB0 2输入DC/2输出24V
- 西门子SM1223 数字量输入输出模块 8输入/8输出继电器6ES7223-1QH32-0XB0
- 西门子SM1223 数字量输入输出模块16输入/16输出24V 6ES7223-1BL32-0XB0
- 西门子SM1223 数字量输入输出模块8输入/8输出24V 6ES7223-1BH32-0XB0
- 西门子SM1223 数字量输入输出模块 8输入24V8输出继电器6ES7223-1PH32-0XB0
- S7-200西门子6ES7223-1PL22-0XA8数字量输入输出PLC控制器扩展模块
- 西门子CPU控制器6ES7223-1PM22-0XA8
- 西门子CPU控制器6ES7223-1BM22-0XA8