全国服务热线 15221406036

6ES7214-2BD23-0XB8原装库存

更新时间:2024-05-08 07:10:00
价格:请来电询价
联系电话:
联系手机: 15221406036
联系人:聂航
让卖家联系我
详细介绍

6ES7214-2BD23-0XB8原装库存

1 引言

电源监控是铁路信号的重要的监控系统。在此之前信号的电源监控系统基本上是采用单片机作为信号采集系统的核心。单片机监控系统一方面存在采集速度慢、界面不友好、操作不方便等技术局限,另一方面由于其中的电源模块部分的监控相对独立,对电源系统带来了诸多不便,比如维护困难、界面显示繁琐等。基于以上原因本项目配套开发了基于台达PLC作为信号采集核心、台达HMI触摸屏作为操作和监视界面的电源监控系统。监控子系统与电源模块通过工业总线网络互连实现整合的经济实用、技术先进的铁路信号的电源监控系统。

2 硬软件系统设计

2.1硬件体系设计

图1 硬件体系设计

铁路信号电源监控硬件体系设计参见图1。系统规模:44个数字量输入;1个数字量输出;6个电源模块;39路模拟量输入。

控制系统配置如下:触摸屏:DOPA75CSTD;PLC:DVP16EH00T+1个DVP04AD-H+3个DVP16HM11N;电源模块通讯卡1块;分时采集电路卡1块。

触摸屏主要是用来显示采集数据、报警、报警上下限设定、采集数据显示微调、报警数据显示、历史趋势图显示等。PLC主要是采集数据并计算,由于考虑系统对模拟量采集的速度要求不是很高,为了节省成本,系统中使用了1 个DVP04AD-H对39路模拟量进行了分时采集,为了实现这个功能我们与厂家共同实验开发了一个电子开关电路,对39路模拟量分了十组、每组4路,通过输出不同的组别进行采集。电源通讯卡主要负责把6块电源模块的数据汇总并且通过RS484接口以MODBUS协议与PLC通讯,使PLC采集得到6块电源模块的数据,为实现这个功能我们公司的电源研发部门做了大量的工作,终使PLC与电源模块的通讯卡实现了通讯,电源模块的信息得到了采集。

2.2软件体系设计

(1)系统功能设计:44个数字量采集显示,故障判断;6个电源模块的数据采集显示、显示电源模块的工作状态并判断报警;39路模拟量显示、并判断上下限报警;显示报警画面、报警信息、当前报警、报警频次;报警上下限设定;数据微调功能,并且显示微调值;

历史趋势图显示;不同画面开启权限设定;

以上有必要说明的是数据微调功能,由于现场的一次测量元件测量会有误差,而且此误差是固定的,短时间内是不变的,所以在程序当中增加这部分功能,使终显示出来的数值是消除误差之后的值;

(2)系统结构设计分为HMI人机对话界面部分和PLC现场监控部分。HMI部分主要构架参见图2。

图2 HMI人机对话界面

PLC监控部分主要包括:电源模块通讯;分时采集40路模拟量,每次采集4路;对采集的模拟量根据量程进行计算得出显示值,显示电源模块的工作状态并判断报警;微调值计算,显示值微调,并做负值消除;故障和报警;数字量采集显示,故障判断;

3 工程调试

调试分时采集功能时需要注意分时采集的时间,过大会影响整体数据采集的时间,过小会造成采集数据混乱,另外需要在两次采集数据之间加一段间隔时间,避免两组数据的重叠。对采集的模拟量根据量程进行计算得出显示值。微调值计算,显示值微调,并做负值消除;注意微调时可能会出现负值情况,所以要考虑负值的消除。电源模块通讯注意电源通讯时的通讯协议一定要在通讯卡中设置好,包括站号设定,另外注意地址对应。故障和报警;因为报警点共有79个,很繁琐,需要思路清晰。

4结束语

基于中达电通公司提供的解决方案的典型案例整合了两种不同种类的产品,体现出单一技术平台在集成工程中的一体化特点。

1LS1极板上限开关;1LS2上极限开关;2LS1极板下限开关;2LS2下极限开关; GC1主电机定子合闸开关;ST液箱温度高;SL液箱温度低;GC2主电机转子短接开关; Q1极板电机控制开关;Q2液泵电机控制开关;1KM1控制极板上升接触器; 1KM2控制极板下降接触器;2KM1控制液泵电机运转接触器;KM3切除液体变阻器的接触器; KM4液体变阻器系统正常;H1极板上升或上限指示;H2极板下降或下限指示; H3液箱状态(包括液温、液位等)指示

图2 液体变阻器控制软件流程图

液体变阻器同频敏变阻器相比,由于液体变阻器属于无感电阻,且变化平滑,比其他变阻器波动小,因此功率因数高,可使电机的起动电流控制在1.3Ie以下,增大了起动转矩。当电网电压发生波动,低于额定电压时也能正常起动。但是若在起动过程中,上、下限位开关触点接触不良或在正常运转过程中转子短接接触器触头损坏不通,均会使液体变阻箱在极短时间内发生“开锅”现象,损坏其内部绝缘套筒及绝缘套管,使变阻器不能工作,严重时会使其机械传动机构也损坏。由于转子侧电流较大,这种故障发生时间即使很短,也会造成重大损失,且不易被操作监护人员发觉。通过温度检测,利用PLC丰富的软硬件资源进行优化设计,可对变阻器起到保护作用。

3 动静压轴承润滑控制系统

为了减少轴瓦磨损,tigao轴瓦寿命,大型磨机进出料端润滑系统均采用动静压控制。动压系统是保证轴瓦润滑;静压系统的作用是,当磨机起动前,中控系统发出静压系统起动信号I20=1,根据转换开关的状态,相应的高压泵工作,若在设定的时间内压力达不到正常值,或此泵出现故障,备用泵立即投入运行,两泵互为备用工作方式,当压力达到正常值时,磨机筒体即被顶起,处于“悬浮”状态,大大减小了起动矩,此时并向系统发出允许主电机合闸信号,使磨机起动。当磨机故障或正常停机时,静压系统立即投入运转,使磨机在“悬浮”状态下平稳停机。磨机静压控制系统硬件配置及软件控制流程与图1、2类同,在此不赘述。

4 结论

利用PLC将磨机的各个润滑系统、液体上阻器等检测点的温度、压力等信号分别送入PLC的A/D模块和DI模块,使整个系统减少了大量的内外部连线,省掉了许多常规元件,系统可靠性大大tigao,且操作简单,通过模拟盘可随时查找任何点的故障。这种系统已在苏州扬子水泥公司3台ф3.4m×7.5m+1.8m烘干磨,4台ф3.5m×11m水泥磨,苏州天平集团2台ф3m×11m水泥磨中投入使用,在几年的运行中均没出现问题,大大地tigao了系统的自动化水平和设备的安全性。

1、引言

燃烧控制系统是电厂锅炉的主控系统,主要包括燃料控制系统、风量控制系统、炉膛压力控制系统。目前大部分电厂的锅炉燃烧控制系统仍然采用PID控制。燃烧控制系统由主蒸汽压力控制和燃烧率控制组成串级控制系统,其中燃烧率控制由燃料量控制、送风量控制、引风量控制构成,各个子控制系统分别通过不同的测量、控制手段来保证经济燃烧和安全燃烧。如图1所示。


图1 燃烧控制系统结构图

2、控制方案

锅炉燃烧自动控制系统的基本任务是使燃料燃烧所提供的热量适应外界对锅炉输出的蒸汽负荷的要求,同时还要保证锅炉安全经济运行。一台锅炉的燃料量、送风量和引风量三者的控制任务是不可分开的,可以用三个控制器控制这三个控制变量,但彼此之间应互相协调,才能可靠工作。对给定出水温度的情况,则需要调节鼓风量与给煤量的比例,使锅炉运行在佳燃烧状态。同时应使炉膛内存在一定的负压,以维持锅炉热效率、避免炉膛过热向外喷火,保证了人员的安全和环境卫生。

2.1 控制系统总体框架设计

燃烧过程自动控制系统的方案,与锅炉设备的类型、运行方式及控制要求有关,对不同的情况与要求,控制系统的设计方案不一样。将单元机组燃烧过程被控对象看作是一个多变量系统,设计控制系统时,充分考虑工程实际问题,既保证符合运行人员的操作习惯,又要大限度的实施燃烧优化控制。控制系统的总体框架如图2所示。


图2 单元机组燃烧过程控制原理图

P为机组负荷热量信号为D+dPbdt。控制系统包括:滑压运行主汽压力设定值计算模块(由热力系统实验获得数据,再拟合成可用DCS折线功能块实现的曲线)、负荷—送风量模糊计算模块、主蒸汽压力控制系统和送、引风控制系统等。主蒸汽压力控制系统采用常规串级PID控制结构。

2.2 燃料量控制系统

当外界对锅炉蒸汽负荷的要求变化时,必须相应的改变锅炉燃烧的燃料量。燃料量控制是锅炉控制中基本也是主要的一个系统。因为给煤量的多少既影响主汽压力,也影响送、引风量的控制,还影响到汽包中蒸汽蒸发量及汽温等参数,所以燃料量控制对锅炉运行有重大影响。燃料控制可用图3简单表示。


图3 燃料量控制策略

其中:NB为锅炉负荷要求;B为燃料量;F(x)为执行机构。

设置燃料量控制子系统的目的之一就是利用它来消除燃料侧内部的自发扰动,改善系统的调节品质。另外,由于大型机组容量大,各部分之间联系密切,相互影响不可忽略。特别是燃料品种的变化、投入的燃料供给装置的台数不同等因素都会给控制系统带来影响。燃料量控制子系统的设置也为解决这些问题提供了手段。

2.3 送风量控制系统

为了实现经济燃烧,当燃料量改变时,必须相应的改变送风量,使送风量与燃料量相适应。燃料量与送风量的关系见图4。


图4 燃料量与送风量关系

燃烧过程的经济与否可以通过剩余空气系数是否合适来衡量,过剩空气系数通常用烟气的含氧量来间接表示。实现经济燃烧基本的方法是使风量与燃料量成一定的比例。

送风量控制子系统的任务就是使锅炉的送风量与燃料量相协调,可以达到锅炉的高热效率,保证机组的经济性,但由于锅炉的热效率不能直接测量,故通常通过一些间接的方法来达到目的。如图5所示,以实测的燃料量B作为送风量调节器的给定值,使送风量V和燃料量B成一定的比例。


图5 燃料量空气调节系统

在稳态时,系统可保证燃料量和送风量间满足

选择使送风量略大于B完全燃烧所需要的理论空气量。这个系统的优点是实现简单,可以消除来自负荷侧和燃料侧的各种扰动。

2.4 引风量控制系统

为了保持炉膛压力在要求的范围内,引风量必须与送风量相适应。炉膛压力的高低也关系着锅炉的安全和经济运行。炉膛压力过低会使大量的冷风漏入炉膛,将会增大引风机的负荷和排烟损失,炉膛压力太低甚至会引起内爆;反之炉膛压力高且高出大气压力的时候,会使火焰和烟气冒出,不仅影响环境卫生,甚至可能影响设备和人生安全。引风量控制子系统的任务是保证一定的炉膛负压力,且炉膛负压必须控制在允许范围内,一般在-20Pa左右。

控制炉膛负压的手段是调节引风机的引风量,其主要的外部扰动是送风量。作为调节对象,炉膛烟道的惯性很小,无论在内扰和外扰下,都近似一个比例环节。一般采用单回路调节系统并加以前馈的方法进行控制,如图6所示。


图6 引风量控制子系统

图中为炉膛负压给定值,S为实测的炉膛负压,Q为引风量,V为送风量。由于炉膛负压实际上决定于送风量和引风量的平衡,故利用送风量作为前馈信号,以改善系统的调节性能。另外,由于调节对象相当于一个比例环节,被调量反应过于灵敏,为了防止小幅度偏差引起引风机挡板的频繁动作,可设置调节器的比例带自动修正环节,使得在小偏差时增大调节器的比例带。对于负压S的测量信号,也需进行低通滤波,以抑制测量值的剧烈波动。

3、系统硬件配置

在锅炉燃烧过程中,用常规仪表进行控制,存在滞后、间歇调节、烟气中氧含量超过给定值、低负荷和烟气温度过低等问题。采用PLC对锅炉进行控制时,由于它的运算速度快、精度高、准确可靠,可适应复杂的、难于处理的控制系统。因而,可以解决以上由常规仪表控制难以解决的问题。所选择的PLC系统要求具有较强的兼容性,可用小的投资使系统建成及运转;其次,当设计的自动化系统要有所改变时,不需要重新编程,对输入、输出系统不需要再重新接线,不须重新培训人员,就可使PLC系统升级;后,系统性能较高。硬件结构图如图7所示。


图7 硬件结构图

根据系统的要求,选取西门子PLCS7-200 CPU226 作为控制核心,同时还扩展了2个EM231模拟量输入模块和1个CP243-1以太网模块。CPU226的IO点数是2416,这样完全可以满足系统的要求。同时,选用了EM231模块,它是AD转换模块,具有4个模拟量输入,12位AD,其采样速度25μs,温度传感器、压力传感器、liuliang传感器以及含氧检测传感器的输出信号经过调理和放大处理后,成为0~5V的标准信号,EM231模块自动完成AD转换。

S7-200的PPI接口的物理特性为RS-485,可在PPI、MPI和自由通讯口方式下工作。为实现PLC与上位机的通讯提供了多种选择。

为实现人机对话功能,如系统状态以及变量图形显示、参数修改等,还扩展了一块Eview500系列的触摸显示屏,操作控制简单、方便,可用于设置系统参数, 显示锅炉温度等。还有一个以太网模块CP243-1,其作用是可以让S7-200直接连入以太网,通过以太网进行远距离交换数据,与其他的S7-200进行数据传输,通信基于TCPIP,安装方便、简单。

4、系统软件设计

控制程序采用STEP7-MicroWin软件以梯形图方式编写,其软件框图如图8所示。


图8 软件主框图

S7-200PLC给出了一条PID指令,这样省去了复杂的PID算法编程过程,大大方便了用户的使用。使用PID指令有以下要点和经验:

(1)比例系数和积分时间常数的确定。应根据经验值和反复调试确定。
(2)调节量、给定量、输出量等参数的标准归一化转换。
(3)按正确顺序填写PID回路参数表(LOOP TABLE),分配好各参数地址。

5、结束语

单元机组燃烧过程控制系统在某火电厂发电机组锅炉协调控制系统中投入使用。实际运行情况表明:由于引入负荷模糊前馈,使得锅炉燃烧控制系统作为协调控制的子系统,跟随机组负荷变化的能力显著tigao,风煤比能够在静态和动态过程中保持一致;送、引风控制系统在逻辑控制系统的配合下运行的平稳性和安全性tigao,炉膛负压波动减小,满足了运行的要求;在机组负荷不变时,锅炉燃烧稳定,各被调参数动态偏差显著减少,实现了锅炉的优化燃烧;采用非线性PID调节方式,解决了引风挡板的晃动问题。

采用西门子的PLC控制,不仅简化了系统,tigao了设备的可靠性和稳定性,同时也大幅地tigao了燃烧能的热效率。通过操作面板修改系统参数可以满足不同的工况要求,机组的各种信息,如工作状态、故障情况等可以声光报警及文字形式表示出来,主要控制参数(温度值)的实时变化情况以趋势图的形式记录显示, 方便了设备的操作和维护,该系统通用性好、扩展性强,直观易操作


联系方式

  • 地址:上海松江 上海市松江区石湖荡镇塔汇路755弄29号1幢一层A区213室
  • 邮编:201600
  • 联系电话:未提供
  • 经理:聂航
  • 手机:15221406036
  • 微信:15221406036
  • QQ:3064686604
  • Email:3064686604@qq.com