西门子模块6ES7222-1BF22-0XA8正规授权
西门子模块6ES7222-1BF22-0XA8正规授权
.2 PLC工作原理
2.2.1 循环扫描
CUP连续执行用户程序、任务的循环序列称为扫描。CUP的扫描周期包括读输入、执行程序、处理通讯请求、执行CUP自诊断测试及写输出等等内容。
PLC可被看成是在系统软件支持下的一种扫描设备。他意识周而复始的循环扫描并执行由系统软件规定好的任务。用户程序只是扫描周期的一个组成部分,用户程序不运行时,PLC也在扫描,只不过在一个周期中去除了用户程序和读输入、写输出这几部分的内容。典型的PLC在一个周期中可以完成以下5个扫描过程。
(1)自诊断测试扫描过程。为保证设备的可靠行,及时放映所出现的故障,PLC都具有自监视功能。
(2)与网络进行通讯的扫描过程。一般小型系统没有这一扫描过程,配有网络的PLC系统才有通讯扫描过程,这一过程用于PLC之间及PLC与上位计算机或终端设备之间的通信。
(3)用户程序扫描过程。机器处于正常运行状态下,每一个扫描周期内都包含该扫描过程。该过程在机器运行中是否执行是可控的,即用户可以通过软件进行设定。用户程序的长短会影响过程所用的时间。
(4)读输入、写输出扫描过程。机器在正常运行状态下,每一个扫描周期都包含这个扫描过程。该过程在机器运行中是否被执行是可控的。CUP在处理用户程序时,使用的输入值不是直接从输入点读取的,运算的结果也不直接送到实际输出点,而是在内存中设置了两个映象寄存器:一个为输入映象寄存器,另一个为输出映象寄存器。用户程序所用的输入值是输入映象寄存器的值,运算结果也放在输出映像寄存器。在输入扫描过程中,CUP把实际输入点的状态锁入到输入映像寄存器:在输出扫描过程中CUP把输出映像寄存器的值的输出点。
循环扫描有如下特点:
(1)扫描周期周而复始地进行,读输入、输出和用户程序是否执行是可控的。
(2)输入映像寄存器的内容是由设备驱动的,在程序执行过程中的一个周期内输入映像寄存器的值保持不变,CUP采用集中输入的控制思想,只能使用输入映像寄存器的值来控制程序的执行。
(3)对同一个输出单元的多次使用、修改次序会造成不同的执行结果。
(4)各个电路和不同的扫描阶段会造成输入和输出的延迟,这是PLC的主要缺点。
在读输入阶段,CUP对各个输入端子进行扫描,通过输入电路将各输入点的状态锁入映象寄存器中。紧接着转入用户程序执行阶段,CUP按照先左后右、先上后下的顺序对每条指令进行扫描,根据输入映象寄存器和输出映象寄存器的状态执行用户程序,同时将执行结果写入输出映象寄存器。在程序执行期间,即使输入端子状态发生变化,输入状态寄存器的内容也不会改变——输入端子状态变化只能在下一个周期的输入阶段才被集中读入。
输入/输出采用映象寄存器的优点:
(1)集中采用I/O,程序扫描期间输入值固定不变,程序执行完后统一输出。这种集中
图3 PLC信号的传递过程
I/O的方式保证的程序的顺序执行与外部电路乱序执行的统一,使系统更加稳定可靠。
(2)程序执行时,存取映象寄存器要比读写I/O端点快的多,这样可以加快程序执行速度。
(3)I/O点必须按位存取,而映象寄存器可按位、字节、字、双字灵活的存取,增加了程序的灵活性。
2.2.2 I/O响应时间
由于PLC采用循环扫描的工作方式,而且对输入和输出信号只在没个扫描周期的固定时间集中输入/输出,所以必然会产生输出信号相对输入信号滞后的现象。扫描周期越长,滞后现象越严重。
响应时间有输入延迟、输出延迟和程序执行时间部分决定。
(1)PLC输入电路设置了滤波器,滤波器的常数越大,对输入信号的延迟作用越强。输入延迟是由硬件决定的,有的PLC滤波器时间常数可调。
(2)从输出锁存器到输出端子所经历的时间称为输出延迟,对于不同的输出形式,其值大小不同。它也是由硬件决定的,对于不同信号的PLC可以通过查表得到。
(3)程序执行时间主要由程序长短来决定,对于一个实际的控制程序,编程人员须对此进行现场测算,使PLC的响应时间控制在系统允许的范围内。
在有利的情况下,输入状态经过一个扫描周期在输出得到响应的时间,称为小I/O响应时间。在不利的情况下,输入点的状态恰好错过了输入的锁入时刻,造成在下一个输出锁定才能被响应,这就需要两个扫描周期时间,称为大I/O响应时间。它们是由PLC的扫描执行方式决定的,与编程方法无关。
2.2.3 PLC中的存储器
PLC中的存储器按用途分为系统程序存储器、用户程序存储器以及工作数据存储器。
(1)系统程序存储器中存放的是厂家根据其选用的PLC的指令的系统编写的系统程序,它决定了PLC的功能,用户不能更改其内容。
(2)用户程序存储器用来存储根据控制要求而编制的用户应用程序。
(3)用来存储工作数据的区域称为工作数据区。
2.3 PLC的编程语言
PLC的硬件系统中,与PLC的编程应用关系直接的要算数据存储器。计算机运行处理的是数据,数据存储在存储区中,找到待处理的数据一定要知道数据的存储地址。
PLC和其他的计算机一样,为了使用方便,数据存储器都作了分区,为了每个存储单元编排了地址,并且经机内系统程序为每个存储单元赋予了不同的功能,形成了专用的存储元件。这就是前面提到过的编程的“软”元件。为了理解方便,PLC的编程元件用“继电器”命名, 认为它们象继电器一样具有线圈以及触点,并且线圈得电,触点动作。当然这个线圈和触点只是假象,所谓线圈得电不过是存储单元置1,线圈失电,不过就是存储单元置0,也正因为如此,我们称之为“软”元件。但是这种“软”继电器也有个突出的好处,可以认为它们具有无数多对动合动断触点,因此每取用一次它的触点,不过是读一次它的存储数据而已。
2.3.1 PLC的编程结构功能图
任何语言都有编程的对象和基础,重要介绍梯形图语言和语句表语言,而功能图是理解这两种语言的基础。如图3所示为PLC内部的结构功能示意图。
输入继电器是由外部输入驱动的,梯形图中只能使用其介入点状态值,用户不能改变输入继电器的状态。辅助继电器的种类和多少决定了PLC控制功能的强弱,相当于工作寄存器的多少和功能的强弱。
实际的PLC中并没有图中的物理继电器,用继电器来表示PLC的内部功能结构是为了使习惯于继电器控制的工程技术人员更好的理解PLC的功能,更好的使用PLC,就像他在设计继电器控制电路一样。
梯形图语言是一种图形化的语言,是一种面向控制过程的“自然语言”。梯形图编程语言形象、直观、准确的描述了逻辑控制关系,容易被广大的工程技术人员所掌握。
PLC与被控对象所连接的只是I/O条件,而I/O之间的组合控制关系需要用软件的方法来描述清楚,梯形图是一种描述方法,当然还有语句等表示其他的语言。语言的支持取决于厂家开发的系统程序只要将其输入PLC的用户程序存储器中,PLC就能够直接解释并实现I/O间的控制关系。当控制关系发生改变时,只要修改梯形图程序,重新输入到PLC的存储器即可。
图4 PLC内部的结构功能示意图
2.3.2 梯形图编程语言
PLC是通过程序对系统进行控制的,作为一种专用计算机,为了适应其应用领域,一定有其专用的语言。PLC的编程语言有多种,如梯形图、语句表、功能图、逻辑方程等。梯形图编程语言是一种图形语言,具有继电器控制电路形象、直观的优点;语句表编程语言类似计算机的汇编语言,用助记符来表示各种指令的功能,是PLC用户程序的基础元素。
一般而言,梯形图程序让PLC仿真来自电源的电流通过一系列的输入逻辑条件,根据结果决定逻辑输出的允许条件。逻辑通常被分解成小的容易理解的片,这些片通常被称为“梯级”或网络。
程序一次扫描执行一次网络,按照从做到右、从上到下的顺序进行。一旦CUP执行到程序的结尾,就又从上到下执行程序。在每一个网络中,指令以列为基础被执行,从上而下、从左到右依次执行,直到本网络的后一个线圈列。因此为了充分利用存储器容量,使扫描时间尽可能短,利用梯形图编程时应限制触点之间的距离,并使网络左上边这部分空白少。其中,串联触点较多的支路要写在上面,并联支路应写在左边,线圈放于触点的右边。
如图4所示是用PLC控制的梯形图程序,可完成与继电器控制的电动机直接起、停(起、保、停)继电器控制电路图相同的功能。
梯形图和继电器控制电路图很相似,这是可以用PLC控制取代继电器控制的基础,可以把经过实践证明设计是成功的继电器电路图进行转换,从而设计出具有相同功能的PLC控制程序,充分发挥PLC的功能完善、可靠性高、控制灵活的特点。当然,它们还是存在着本质上的区别,主要表现如下所述。
图5 梯形图
(1)继电器控制电路中使用的继电器是物理的元器件,继电器与其他控制电器之间的连接必须通过硬件连接线来完成。PLC中的继电器是内部的寄存器位,称为“软继电器”,它具有物理继电器相似的功能。当它的“线圈”通电时,其所属的常开触点闭合,常闭触点断开;当它的线圈断电时,其所属的常开触点和常闭触点均恢复常态。PLC梯形图中的接线称为“软接线”,这种“软接线”是通过编程来实现的,具有更改简单、调试方便等特点。而继电器控制电路图是点线连接图,相对来素施工困难、更改费力。
(2)PLC中的每一个继电器都对应着一个内部的寄存器,由于可以随时不受限地读取其内容,所以,可以认为PLC的继电器有无数个常开、常闭触点供用户使用。PLC梯形图中的触点代表的是“逻辑”输入条件、外部的实际开关、按钮或内部的继电器触点条件等。而物理继电器的触点个数是有限的。
(3)PLC的输入继电器是由外部信号驱动的,在梯形图中只能用其触点,这在物理继电器中是不可能的。线圈通常代表“逻辑”输出结果,如灯、电机启动器、中间继电器、内部输出条件等。
(4)继电器控制系统中是按照触点的动作顺序和是延迟逐个动作的,动作顺序与电路图的编写顺序无关。PLC按照扫描方式工作,首先采取输入信号,然后对所有梯形图进行计算,造成了宏观与动作顺序的无关,但是微观上在一个时间段上的是实际执行顺序与梯形图的编写顺序一致而不是无关的。
(5)PLC梯形图中的两根母线以失去原有的意义,它只表示一个梯形的起始和终了,并无实际电流通过,假象的概念电流只能从左向右流。
为了充分发挥CUP的逻辑运算功能,设置了大量的称为盒的附加命令,如定时器、计算器、格式转换、模拟量I/O、PID调节或数学运算指令等,充分的发挥了计算机的强大计算功能,他们与内部继电器一起完成PLC的各种复杂控制功能。
2.4 PLC的分类
PLC发展到,已经有了多种形式,而且功能也不尽相同,分类时,一般按以下原则来考虑
2.4.1 按I/O点数容量分类
一般而言,处理I/O点数越多,则控制关系就 比较复杂,用户要求的程序存储器容量比较大,要求PLC指令及其他功能比较多,指令执行的过程也比较快。按PLC的输入、输出点数的多少可将PLC分为以下三类。
(1)小型机
小型机PLC的功能一般以开关量控制为主,小型PLC输入、输出点数一般在256点以下,用户程序存储器容量在4K左右。现在的高性能小型PLC还具有一定的通讯能力和少量的模拟量处理能力。这类的PLC的特点是价格低廉,体积小巧,适合于控制单台设备和开发机电一体化产品。
典型的小型机有SIEMENS公司的S7-200系列、OMRON公司的CPM2A系列、MITUBISH公司的FX系列和AB公司的SLC500系列等整体式PLC产品。
(2)中型机
中型PLC的输入、输出总点数在256~~2048点之间,用户程序存储器容量达到8K字左右。中型PLC不仅具有开关量和模拟量的控制功能,还具有更强的数字计算能力,它的通信功能和模拟量处理功能更强大,中型机比小型机更丰富,中型机适用于更复杂的逻辑控制系统以及连续生产线的过程控制系统场合。
典型的中型机有SIEMENS公司的S7-300系列、OMRON公司的C200H系列、AB公司的SLC500系列等模块式PLC产品。
(3)大型机
大型PLC的输入、输出总点数在2048点以上,用户程序储存器容量达到16K以上。大型PLC的性能已经与工业控制计算机相当,它具有计算、控制和调节的能力,还具有强大的网络结构和通信联网能力,有些PLC还具有冗余能力。它的监视系统采用CRT显示,能够表示过程的动态流程,记录各种曲线,PID调节参数等;它配备多种智能板,构成一台多功能系统。这种系统还可以和其他型号的控制器互联,和上位机相联,组成一个集中分散的生产过程和产品质量控制系统。大型机适用于设备自动化控制、过程自动化控制和过程监控系统。
典型的大型PLC有SIEMENS公司的S7-400、OMRON公司的CVM1和CS1系列、AB公司的SLC5/05等系列。
2.4.2 按结构形式分
根据PLC结构形式的不同,PLC主要可分为整体式和模块式两类。
(1)整体式结构
整体式结构的特点是将PLC的基本部件,如CUP板、输入板、输出板、电源板等紧凑的安装在一个标准的机壳内,构成一个整体,组成PLC的一个基本单元(主机)或扩展单元。基本单元上设有扩展端口,通过扩展电缆与扩展单元相连,配有许多专用的特殊功能的模块,如模拟量输入/输出模块、热电偶、热电阻模块、通信模块等,以构成PLC不同的配置。整体式结构的PLC体积小,成本底,安装方便。
微型和小型PLC一般为整体式结构。如西门子的S7-200
(2)模块式结构
模块式结构的PLC是由一些模块单元构成,这些标准模块如CUP模块、输入模块、输出模块、电源模块和各种功能模块等,将这些模块插在框架上和基板上即可。各个模块功能是独立的,外型尺寸是统一的,可根据需要灵活配置。
目前大、中型PLC都采用这种方式。如西门子的S7-300和S7-400系列。
整体式PLC每一个I/O点的平均价格比模块式的便宜,在小型控制系统中一般采用整体式结构。但是模块式PLC的硬件组态方便灵活,I/O点数的多少、输入点数与输出点数的比例、I/O模块的使用等方面的选择余地都比整体式PLC大的多,维修时更换模块、判断故障范围也很方便,因此较复杂的、要求较高的系统一般选用模块式PLC。
2.5 PLC与继电器控制系统的区别
PLC梯形图与继电器控制电路图非常相似,主要原因是 PLC梯形图大致上沿用了继电器控制的元件符号和术语,仅个别之处有不同。同时,信号的输入/输出形式及控制功能也基本上是相同的,但是PLC的控制与继电器的控制又有根本的不同之处,主要表现在以下几个方面。
(1)逻辑控制
继电器控制逻辑采用硬接线逻辑,利用继电器机械触点的串联或并联,及延时继电器的滞后动作等组合成控制逻辑,其接线多而复杂、体积大、功耗大、故障率高,一旦系统构成后,想改变或增加功能都很困难。另外,继电器触点数目有限,每个只有4——8个对触点。因此,灵活性和扩展性很差。而PLC采用存储器逻辑,其控制逻辑以程序方式存储在内存中,要改变控制逻辑,只需改变程序即可,故称为“软接线”。因此灵活性和扩展性都很好。
(2)工作方式
电源接通时,继电器控制电路中各个继电器都同时处于受控状态,即该吸合的都应该吸合,不该吸合的都因受某种条件限制不能吸合,它属于并行工作方式。而的控制逻辑中,各内部器件都处于周期性循环扫描过程中,属于串行工作方式。
(3)可靠性和可维护性
继电器控制逻辑使用了大量的机械触点,连线也多。触点开闭时会受到电弧的损坏,并有机械磨损,寿命短,因此可靠性和可维护性差。而PLC采用微电子技术,大量的开关动作由无触点的半导体电路来完成,体积小、寿命长、可靠性高。PLC还配有自监和监督功能,能检查出自身的故障,并随时显示给操作人员,还能动态的监视控制程序的执行情况,为现场调试和维护提供了方便。
(4)控制速度
继电器控制逻辑依靠触点的机械动作实现控制,工作频率底,触点的开闭动作一般在几十MS数量级。另外,机械触点还会出现抖动问题。而PLC是由程序指令控制半导体电路来实现控制,属于无触点控制,速度极快,一般一条用户指令执行时间在数量级,且不会出现抖动。
(5)定时控制
继电器控制逻辑利用时间继电器进行时间控制。一般来说,时间继电器存在定时精度不高,定时范围窄,且易受环境湿度和温度变化的影响,调整时间困难等问题。PLC使用半导体集成电路做定时器,时基脉冲由晶体震荡器发生,精度相当高,且定时时间不受环境的影响定时范围一般从0.001S到若干天或更长。用户和根据需要在程序中设定定时值,然后用软件来控制定时时间。
(6)设计和施工
使用继电器控制逻辑完成一项控制工程,其设计、施工、调试必须依次进行,周期长而且修改困难。工程越大着一点就越突出。而用PLC完成一项控制工程,在系统设计完成以后,现场施工和控制逻辑的设计(包括梯形图的设计)可以同时进行,周期短,且调试和修改都很方便。
从以上几个方面的比较可知,PLC在性能上比继电器控制逻辑优异,特别是可靠性高、通用性强、设计施工周期短、调试修改方便,而且体积小、功耗低、使用维护方便。但是在很小的系统中使用时,价格要高于继电器系统。
2.6 PLC控制系统的结构
使用PLC可以构成多种形式的控制结构,下面介绍几种常用的PLC控制系统。
2.6.1 单机控制系统
单机控制系统是较普通的一种PLC控制系统。该系统使用一台PLC控制一个对象,控制系统要求的I/O点数和存储器容量都比较小,没有PLC的通讯问题,采样条件和执行结构都比较集中,控制系统的构成简单明了。
如图5所示是一个简单的单机控制系统,图中PLC可以选用任何一种类型。在单机控制系统中由于控制对象比较确定,因此系统要完成的功能一般较明确,I/O点数、存储器容量等参数的余量适中即可等参数的余量适中即可。
图6 简单的单机控制系统
2.6.2 集中控制系统
集中控制系统用仪态功能强大的PLC监视、控制多个设备,形成中央集中式的控制系统。其中,各个设备之间的联络,连锁关系、运行顺序等统一由中央PLC来完成,如图6示
显然,集中控制系统比单机控制系统经济的多。但是当其中一个控制对象的控制程序需
要改变时,必须停止运行中央PLC,其他的控制对象也必须停止运行。当各个控制对象的地理位置距集中控制系统比较远时,需要大量的电缆线,造成系统成本的增加。为了适应控制系统的改变,采用集中控制系统时,必须注意选择I/O点数和存储器容量时要留有足够的余量,以便满足增加控制对象的要求。
图7 集中控制系统
2.6.3 分散控制系统
分散控制系统的构成如图7所示,每一个控制对象设置一台PLC,各台PLC可以通过信号传递进行内部连锁、响应或发令等,或者由上位机通过数据通信总线进行通讯。
分散控制系统常用于多台机械生产线的控制,各个生产线之间有数据连接。由于各个控制对象都由自己的PLC进行控制,当其中一个PLC停止运行时不需要停止运行其他的PLC。
随着PLC性能的不断提高,由PLC担当低层控制任务,通过网络连接,PLC与过程控制相结合的分散控制系统将是计算机控制的重要发展方向。
与集中控制系统相比,分散控制系统的可靠性大大加强。具有相同I/O点数时,虽然分散控制系统中多用了一台或几台PLC,导致价格偏高,但是从维护、试运转或增设控制对象等方面来看,其灵活性要大的多,总的成本核算是合理的。
图8 分散控制系统
2.7 三菱PLC的优点
菱电公司的AnSH和FX2N型PLC在工业控制中是市场占有率较高的PLC,以其可靠应用的品质、较高的性价比和抗干扰性能强而著称,这两款PLC的应用使得系统的可靠性和经济性得到了保证。
2) 与其他产品相比,三菱PLC指令简洁,给用户编程,维护都带来极大方便,降低了生产成本,可较大缩短开发周期。
3) CC-bbbb现场总线传输速率较高,数据传输可靠性好,保证了本系统大量仿真数据的可靠传输,使得系统的实时性、可靠性得到了保证。同时,CC-bbbb的应用大量减少现场布线,使得系统的可维护性得到了提高。
4) 系统采用真正的分布式概念,使得仿真平台相互之间的相关性减少,便于了系统的设计、分析和应用。
5) 系统由现地手动和远程计算机自动控制两种方式,增加了系统的灵活性。
- 西门子S7-1200 SB1222 数字量信号板模块6ES7222-1AD30-0XB0
- 西门子SM1222 数字量输出模块16输出24V 6ES7222-1BH32-0XB0
- 西门子SM1222 数字量输出模块, 16输出继电器6ES7222-1HH32-0XB0
- 西门子SM1222 数字量输出模块6ES7222-1XF32-0XB0 8输出切换继电器
- 西门子SM1222 数字量输出模块6ES7222-1BF32-0XB0 8输出24V 8输出24V
- 西门子SM1222 数字量输出模块6ES7222-1HF32-0XB0 8输出继电器
- 西门子6ES7222-1BH32-OXBO 现货 质量保证
- 西门子6ES7222-1HF22-0XA8授权代理商-现货供应
- 模块 6ES7222-1HH32-0XB0具备外部短路保护功能
- 西门子S7-200 EM222 4出继电器6ES7222-1HD22-0XA0