全国服务热线 15221406036

西门子6ES7221-1EF22-0XA0正规授权

更新时间:2024-05-08 07:10:00
价格:请来电询价
联系电话:
联系手机: 15221406036
联系人:聂航
让卖家联系我
详细介绍

西门子6ES7221-1EF22-0XA0正规授权

0 引言

组合机床是针对某些特定工件,按特定工序进行批量加工的专用设备。随着PLC的广泛应用和机床电控技术的不断发展,利用PLC实现对组合机床的自动控制,无疑是今后的发展方向,而针对这种控制的PLC程序设计也显得尤为重要。这种控制属于顺序逻辑控制,有多种编程方法与语言可供选择,编程中也有一些技巧与规律可循。下面较为详细的介绍一组合机床自动控制的PLC程序设计实例。

1 实例工作过程及程序设计思路

本文给出的实例是一台立卧三面镗床,有右头、左头及上头三个工作头,有自动循环(三头同时加工)和单头调整四种不同工况。三头同时加工时,一个自动工作循环过程如图1所示。其特点是多头同时加工和多工步,体现在控制要求上是:工步之间转换条件较复杂,存在并行同步问题,记忆、连锁等问题也较多。鉴于此,应采用顺序功能流程图的程序设计方法:首先根据对工作过程的分析对各步、转换条件及路径进行全面定义,确定各步的动作,然后按照控制要求,运用指令对各步和转换进行编程。


图1 自动工作循环过程

步的定义可由顺序功能流程图描述,图2所示为本例主功能流程图。它从功能入手,以功能为主线,将生产过程分解为若干个独立的连续阶段(步) 。

分解的各步可以是一个实际的顺序步,例如步1,对应的动作是起动主泵电机,也可以是生产过程的一个阶段,例如步2为自动工作过程,其功能流程图见图3。

从这两个功能流程图可以看到,它将各步的操作、转换条件以及步的推进过程简单明了地显示出来了,并体现出了具有单序列、选择序列、并行序列几种基本结构。例如步25至步27是单序列,实现了多工序的顺序工作;步12、步13、步14及步15构成了四分支选择序列结构,可实现三头同时加工、右头调整、上头调整、左头调整四种工况的选择;而步28至步30、步31至步34、步35至步38则形成了三个并行的分支,实现的是三头同时加工过程;步21、步22与步23、步24间也是并行关系,实现了工件上位降中位与主轴定位两个工序并行工作。该两个并行的过程间有同步问题,即步21 (工件上位降中位)与步23 (主轴定位)同时开始,但不同时结束,需要用并行序列的合并来同步(等待两个动作均结束) ,使之同时转入步25。三头同时加工时也有此问题。在顺序功能流程图的描述中,注意要说明各步间的转换条件、各步对应的命令与动作及相应运行状态。

 


图2 主功能流程图

2 程序实现方法

接下来的第二步则需要用某种编程语言的指令对上述功能流程图进行编程,以实现其中的功能和操作。

目前已有提供直接功能流程图编程的PLC,但对于不具有该编程语言的PLC,可采用仿功能流程图编程的方法,这里所说的是采用梯形图、指令表等常见的编程语言实现编程的方法。根据功能流程图的描述,可将该复杂的结构分解为单序列、选择序列、并行序列几种基本环节,找出这些基本环节各自的规律、编程规则,化整为零分块编程。这样程序为结构化模块形式,编程的思路更清楚,程序设计更为规范。各种基本环节的程序实现可采用通用逻辑指令、置位与复位指令或移位寄存器,这几种实现方法有一个共性就是要考虑如何激活一步、保持该步、又如何停止一步,如果用步进指令来实现,这些问题就无需考虑,程序也简洁的多。下面给出运用步进指令实现的对图2、图3的编程,并就关键问题进行分析。

图4为主功能流程图的梯形图,图5为自动工作功能流程图的梯形图(只给出了一部分) 。先看步25到步27的单序列,其各步的控制规律为:若某步为活动时,则当它与下步间的转换条件一旦成立,该步即变为非活动步,而下一步成为活动步。当步为活动时,相应的动作和命令才执行,非活动步相应的动作和命令不被执行。这样步25是活动步时,会发右头快进指令(使Y442得电) ,直到快进到位(行程开关SQ4受压,转换条件X412满足) ,步25成为非活动步,右头停止快进(使Y442失电) ,步26成为活动步,工件开始从中位降下位(使Y447、Y552得电) ⋯⋯。选择序列各步的控制规律为:分支时,若一个前级步是活动的,则当它与多个选择后续步之间的哪个转换条件满足,哪个后续步就成为活动步,而前级步成为非活动步。合并时,若多个选择前级步之一是活动的,当该活动步与一个后续步之间的转换条件满足,则后续步就成为活动步,前级步成为非活动步。实例中步11为活动步时,四个分支的转换条件哪个成立则哪个分支步就会成为活动步。如果按动自动加工起动按钮,使转换条件X403满足,则会进入步12,开始自动加工过程,直到转换条件X424满足,分支合并循环到初始步,开始一个新的轮回。按照控制要求,整个加工过程中主泵电机需要一直处于运转状态,所以在步11中使用了置位Y430指令,而在步11成为非活动步后, Y430并不失电。并行序列各步的控制规律为:分支时,若一个前级步是活动的,则当转换条件满足,则多个并行的后续步同时成为活动步,而前级步成为非活动步。合并时,若多个并行的前级步均是活动的,当转换条件满足,则一个后续步成为活动步,多个并行的前级步同步成为非活动的。实例中步20为活动步时,执行装件指令,装件完毕,转换条件X425满足,步21、步23同时成为活动步,即停止装件,开始工件上位降中位和主轴定位动作。由于这两个动作不同时结束,因此插入了两个没有动作和命令的空步——步22、步24 (梯形图中相应的步进接点没有连接输出继电器) ,用于分别停止两个前级步,结束相应的动作,并等待两个动作均停止的时刻,一旦时刻来到(条件X410·X427满足) ,两并行步合并转换到步25。三头同时加工时,也有类似的同步问题,在此不再赘述。

 


图3 自动工作功能流程图

3 结束语

通过本PLC程序设计实例可以看出,采用顺序功能流程图的程序设计方法有以下优点:a. 功能流程图与生产过程结合紧密,设计思路明确,系统操作含义清晰,有利于工艺和自控技术、设计人员的思想沟通;b. 功能流程图可以向设计者提供规律的控制问题描述方法,就易于得到相应的编程方式,易于设计出任意复杂的控制程序,并使编程更趋于规范化、标准化。

图4 主功能流程图的梯形图


图5 自动工作功能流程图的梯形图(部分)


当压缩空气需求量大时,为了保证可靠供应,就需要安装多台空气压缩机。某单位是铁路货运编组站,有五台压缩机,安装时间、空压机型号并不相同。而多3台工作即可满足要求,另外2台作为备用。要求五台压缩机工作时间基本相同,当有一台出现故障时就自动停机,当故障消除时又自动投入。故障发生后,备用机在需要时投入运行。我们根据工程要求,设计了自动轮换的PLC软件。由工控机+组态软件作为监视管理用。PLC采用了正航A3系列。

一. 概述

    1.1 几个名词

    五台机器根据其工作状况不同,可以分为以下几种工况。
  运行:空压机正在运转中,正在对系统供应压缩气体。
  停机:没有运行。如果储罐压力低于设定值时,可以投入运行。
  待机:没有运行,也不在停机状态。即便是压力低于设定压力也不会启动。
  故障;空压机出现故障,等待维修,无法投入运行。
  主机:当压力低时,先启动的那台为主机。
  补机:当主机已经运行压力仍然低于要求压力时,要补充启动的机器为补机。
  五台压缩机依次编号为1、2、3、4、5号。
  其中处在运行中的压缩机多为3台。停机的压缩机应该保证为0、1或2台。待机的压缩机多为2台。故障机多为2台。主机为1台,补机为2台。

    1.2 压力设置

    压力段设置如下图:


 压力由模拟量模块采集,以数字形式设置压力段。压力由压力变送器采集,转换为DC 0-10V电压,送给PLC的模拟量模块。经过调零及增益调整,0-1Mpa对应数字量为0-1000。要求的压力范围为0.62-0.75Mpa,对应数字量为620-750。

    1.3  控制要求

    五台压缩机中有三台运行即满足压力需求。开机前首先要选择主机。没有故障机时,一旦主机选定,辅机依次为主机后的2台。主机出现故障时,主机后近的辅机上升为主机,原来排在补机后的待机压缩机上升为停机状态。当辅机出现故障时,近的处在待机状态的压缩机上升为停机状态。本程序中主机的选择要通过手动操作完成。在无故障时,如1号机为主机,2、3好为辅机,2、3号为主机时,依此类推。当4号为主机时,5号及1号为补机。当5号为主机时,1、2号为补机。依此循环。当出现故障时,维修完成后,要手动复位;视其所排的次序及其后的机器工作状态来决定其能否投入正常状态。如果压力高,其次序后的机器都没有运行它可以投入正常状态。比如1号为主机,2号要恢复故障,当按下其复位按钮后,3号如正运行,它要等3号停机后才能恢复为1号主机,在3号停机前它一直等待。2号恢复为1号补机后,原来的2号补机变成待机状态。

    初始启动时,空气储罐压力为0。先启动台。如压力不够,在B点以下,经过一段延时启动第二台。当压力检测经过一段时间延时,还在A点以下时,启动第三台。多启动三台。每台启动后要压力检测要经过延时处理,以防止在压力临界时频繁启动停止。延时的时间根据系统状况确定,本程序中为T1是60S。当压力达到或超过D点时,经过一段时间延时,本程序中为T2是5S,压力仍在D点以上即停止后启动的那台,即2号补机。压力达到或超过E点时,经过延时检测停1号补机。压力达到或超过F点时,经过延时检测停主机,三台全部停止,都处在停机状态。

二.程序的编写

    本程序为先起后停方式控制,主机手动选择。故障恢复按钮按下后要等条件允许才恢复。本程序的思路适合于各种有步进功能的PLC。

    2.1 程序的基本结构

    模拟输入模块调零并调整增益以满足要求。模拟量在程序中并不经过运算处理,仅用作压力界限的判断。程序有自动运行程序,有手动运行程序。在手动时,各台压缩机由手动起停操作。在自动模式时,有步进程序控制。程序中压缩机台数控制采用步进程序判断。当选择好主机并按下启动按钮时程序进入步进程序。由压力界限值及实时采集的压力值判断应启动的台数。

    2.2 步进程序

    当选择好主机后,辅机就为其次序号码后面的机器。“自动启动”按钮按下时,就启动步进程序。步进程序有1台运行的程序,有2台运行的程序,有3台运行的程序。结构如下:

    2.3 系统的保护
  
    初始开机或当压力由高向低变化时,要启动多台机器时,要延时一段时间在增加一台机器投入运行。本程序中延时时间为60S。而当压力升高时,也需要延时,但延时时间设置为5S。是因为压力一定不能超过上限。延时的作用还可减少压力在判断点处时,频繁启动、停止机器。
  
    而空压机本身还有自己的压力超高保护。当用自动控制时,它本身的高压保护点设置高于三台全不启动的F点。当PLC系统故障时,恢复原来的设置即可。它又可以正常手动运行了。
  
    当上位机——工控机出问题时,并不影响下位机PLC的运行,还可以继续工作。等工控机的维修完毕,投入工作,仍然工作正常。
  
三. 上位机及组态软件
  
    上位机采用研华IPC610。组态软件采用MCGS。在上位机监视各台机器的运行状态。各台机器的工况一目了然。当报警发生时工控机发出声音报警。当有某台机器工况变化时,工控机以声音形式报告。工控机的声音是事先录制好的声音文件,在需要时由MCGS调用。
  
四. 应用效果

  
    采用了PLC及组态软件后,明显减轻了操作人员的劳动强度,提高了自动化水平。并且有历史故障记录。受到客户的好评。


联系方式

  • 地址:上海松江 上海市松江区石湖荡镇塔汇路755弄29号1幢一层A区213室
  • 邮编:201600
  • 联系电话:未提供
  • 经理:聂航
  • 手机:15221406036
  • 微信:15221406036
  • QQ:3064686604
  • Email:3064686604@qq.com