西门子6ES7214-2AS23-0XB8当天发货
西门子6ES7214-2AS23-0XB8当天发货
1引言
铁路安全继电器是铁路信号控制系统中的重要执行元件之一,必须在出厂时和使用过程中定期对其电气特性参数进行测试。然而,传统测试设备存在测试精度低,可靠性差,效率低下以及对测试人员要求高等缺点,不能满足现代继电器测试的要求。PLC作为一种新型的控制装置与传统继电器控制系统相比,具有时间响应快,控制精度高、可靠性好、控制程序可随工艺改变、易与计算机相连、维修方便、体积小、重量轻、功耗低及高性能等优点。触摸屏也是一种新型的人机交互设备,操作者只需用手触摸计算机显示屏上的图标或文字就能对主机进行操作,这样就摆脱了传统交互设备复杂操作,即使新手也能轻松操作整个设备。因此,既减少了对操作人员的要求,也提高了工作效率。本文采用PLC、触摸屏及相关辅助电路设计了一种综合电器测试台。
2硬件电路设计
2.1系统概述
该继电器测试台采用欧姆龙CPM2A型号PLC作为控制单元、ET500系列触摸屏实现人机交互,测试普通继电器、接触器、过流继电器、接地继电器的吸合电压(电流)、释放电压(电流)及电磁(电子)式时间继电器的延时时间等参数。图1给出其硬件结构框图。
PLC资料网
PLC通过I/O捕获继电器触点动作,通过扩展模拟I/O模块记录待测继电器动作时的电压(电流)值。同时,PLC把检测到的继电器状态和动作信号送人触摸屏显示,并对各种故障报警等。
2.2测试原理
测试前根据待测继电器型号及类型通过触摸屏设定参数,测试开始后可选择自动、人工方式通过PLC控制增(减)电压(电流),待达到待测继电器吸合电压(电流)、释放电压(电流)后,动合接点(衔铁)动作,PLC记录此时的电压(电流)值或和接点传唤时间存入内部数据区,待测试完毕后通过触摸屏显示并打印。
由于测试对象包括直流或交流继电器,电子式或电磁式继电器。电子式又包括共阴或共阳型。因此,该测试台在设计中满足了各种型号、类型继电器的测试需求,其原理如图2所示。系统通过扩展单元的4~20 mA模拟量控制信号选择直流或交流电源。
在测试时间继电器时,被测的是额定电压下继电器的动作延时时间或释放延时时间。考虑到继电器线圈电压从0 V加至额定值需要一定时间,这会带来测量误差。所以该测试台采用在电源输出端加上一个固体继电器(SSR),图2所示的是使系统自动识别延时类型。开始测试时,系统自动调整输出电压为设定的线圈额定电压,然后通过SSR切断输出电压,等待6 s使线圈两端电压降为0 V,然后再触发SSR使之导通,此时设定额定电压直接输出到时间继电器线圈,并开始计时。
PLC资料网
当操作人员在测试前选择电磁或电子式时,测试台根据触摸屏传来的参数自动切换辅助继电器J10的触点位置,以完成类型的自动识别。图2中J10触点向上构成电子式测量电路连接,J11为电子式继电器的负载继电器;J10触点向下构成电磁式测量电路连接。在选择电子式的同时还要选择被测继电器为共阴还是共阳极,测试台中采用辅助继电器J12的自动切换来完成共阴和共阳极的切换,触点向右构成共阴极,向左构成共阳极。
3软件部分设计
继电器测试台的软件设计主要包括PLC控制软件和触摸屏组态软件两部分。由于欧姆龙CPM2A中增加了一个内置的RS232连接器,PLC无需配置专用的通讯模块就能方便地与外部设备进行通信,所以通过触摸屏与PLC之间的RS232传输就能实现实时通信功能,点击触摸屏向PLC发出各种控制信号,PLC接到触摸屏发出的指令信号后执行运算与控制任务。
3.1 PLC控制软件
PLC作为控制单元,是整个系统的控制核心。通过接收开关量和模拟量的输入,经处理后输出开关量和模拟量去控制继电器的动作。PLC控制软件主要由初始化模块、状态检测模块、控制模块、通信模块和故障处理模块组成,如图3所示。
PLC
初始化模块用于测试电流、电压、时间和日期的初始化,以及所测继电器类型的选择。状态检测模块用于各组成部分的状态检测和显示,并通知故障处理模块进行故障处理。通信模块用于接收触摸屏传来的参数信息,实现与PLC的通信。控制模块用于电流、电压调节和人工调节。
3.1.1状态检测
状态模块主要是检测继电器的状态转换。由于触点的物理特性。动触点在吸合接触静触点的瞬间往往会先吸合,再以微小的幅值弹开后再次吸合。针对这样的"抖动",传统测试装置因灵敏度太差,而对测试结果不会造成影响;然而,该测试台因采用PLC检测触点接触,虽然仅仅是不到0.01s,但是PLC会因捕捉到这样的"抖动"而误认为触点吸合了两次或更多次,以致测量无法正常进行。因此,在软件设计中采取了防抖功能,如图4所示。接点不动作时定时器002计时开始,20 ms后输出为"1"。当接点闭合或断开瞬间,辅助继电器20.09或20.10接通一个扫描周期,高速计数器002开始计时,计时到后辅助继电器20.12接通一个扫描周期,表示继电器状态已可靠转换。 3.1.2输出控制
在测试中,当需要对线圈两端升(降)电压(电流)时,为防止电压(电流)上升过快而造成测量误差较大的问题,通过PLC发出0.2 s的定时脉冲。在PLC发出每个脉冲的同时对电压进行增减,步长为0.1 V。但是有时需要快速增加输出,操作人员可以选择手动输出方式,长按时间2 s以上触摸屏上输出增按钮。这种情况下,采用单位输出增量△a为变值来实现。图5所示快速输出增量图。可见,第n-1次输出增量为an-1,第n次输出增量为△an,控制输出增量△a使△an=an-1+1,使每相同时间△t内的输出增量递增,就可实现输出值a的快速增加。人工输出快速减少时其原理一样。
3.1.3故障处理
测试过程中有异常情况时,系统会根据检测的结果进行相应操作。例如,在测量继电器的吸合电压时,假如继电器线圈断线。根据常识在这种情况下无论系统怎么增加电压,触点都不会吸合,继电器都不会动作。因此,当系统加压到一定值后继电器如果还未动作,系统即认为继电器损坏,结束测量,弹出错误报告。还有其他异常情况,诸如打印时未接打印机、调压模块故障等。
PLC资料网
3.2触摸屏组态
触摸屏界面由支持软件设计、编译,然后从支持工具下载到触摸屏即可使用。触摸屏与PLC之间通过RS232通信电缆进行连接。由PLC对触摸屏状态控制区和通知区进行读写,以达到两者之间的信息交互。 触摸屏的组态是在EasyBuilder组态软件下完成。根据综合电器测试台的要求,设计了初始界面、测试主控界面、电压测试界面、电流测试界面、接地继电器测试界面、电磁式时间继电器测试界面、电子式时间继电器测试界面和手动输出界面共8个人机交互界面。
图6所示为测试主控界面。其过程为是先完成测试界面各个窗口、按钮的布局;其次为了使触摸屏和PLC能够正常通信,还要对测试界面的各个子窗口、按钮和输入区域进行相应的设置。设置完成后对其编译,编译通过后就可通过RS232通信电缆将组态信息下载至触摸屏中,这样触摸屏和PLC的通信就建立起来了。然后,运行组态软件,操作人员用手触控这些输入区域时,系统将弹出数字字母键盘,如图7信息输入键盘所示。在该界面可以输入设备名称、规格型号、产品编号、操作员代号、上车号、下车号等信息。根据需要测试的项目触控界面中相应的按钮进入相应的测试操作界面。
PLC
4结语
该设计的继电器电器测试台已经投入使用,运行结果证明,基于PLC和触摸屏控制的综合电器测试台的工作效率较传统测试设备有大幅度提高,系统工作稳定。具有下述优点:(1)触摸屏人机界面上设置的各种按钮、开关、信号显示灯、仪表等都是实物的替代品,触控寿命长,大大提高了电器测试的可靠性。(2)触摸屏与PLC的连接通讯是通过软件实现的,不占用PLC的I/O点,只需要小型的PLC即可满足测试台的生产,节省了成本。(3)检测精度远远高于传统测试方式,且安全性高。(4)系统的程序接口简单,用户能够很方便地进行系统的二次开发,配置灵活,适应客户要求,保证了整体系统的灵活性和可伸缩性。
PLC的数字量输入接口并不复杂,我们都知道PLC为了提高抗干扰能力,输入接口都采用光电耦合器来隔离输入信号与内部处理电路的传输。因此,输入端的信号只是驱动光电耦合器的内部LED导通,被光电耦合器的光电管接收,即可使外部输入信号可靠传输。
目前PLC数字量输入端口一般分单端共点与双端输入,各厂商的单端共点(Com)的接口有光电耦合器正极共点与负极共点之分,日系PLC通常采用正极共点,欧系PLC习惯采用负极共点;日系PLC供应欧洲市场也按欧洲习惯采用负极共点;为了能灵活使用又发展了单端共点(S/S)可选型,根据需要单端共点可以接负极也可以接正极。
由于这些区别,用户在选配外部传感器时接法上需要一定的区分与了解才能正确使用传感器与PLC为后期的编程工作和系统稳定奠定基础。
二:输入电路的形式
1、输入类型的分类
PLC的数字量输入端子,按电源分直流与交流,按输入接口分类由单端共点输入与双端输入,单端共点接电源正极为SINK(sink Current 拉电流),单端共点接电源负极为SRCE(source Current 灌电流)。
PLC资料网
2、术语的解释
SINK漏型
SOURCE源型
SINK漏型为电流从输入端流出,那么输入端与电源负极相连即可,说明接口内部的光电耦合器为单端共点为电源正极,可接NPN型传感器。
SOURCE源型为电流从输入端流进,那么输入端与电源正极相连即可,说明接口内部的光电耦合器为单端共点为电源负极,可接PNP型传感器。
国内对这两种方式的说法有各种表达:
1)、根据TI的定义,sink Current 为拉电流,source Current为 灌电流,
2)、由按接口的单端共点的极性,共正极与共负极。这样的表述比较容易分清楚。
3)、SINK为NPN接法,SOURCE为PNP接法(按传感器的输出形式的表述)。
4)、SINK为负逻辑接法,SOURCE为正逻辑接法(按传感器的输出形式的表述)。
5)、SINK为传感器的低电平有效,SOURCE为传感器的高电平有效(按传感器的输出状态的表述)。
这种表述的笔者接触的多,也是容易引起混淆的说法。
接近开关与光电开关三、四线输出分NPN与PNP输出,对于无检测信号时NPN的接近开关与光电开关输出为高电平(对内部有上拉电阻而言),当有检测信号,内部NPN管导通,开关输出为低电平。
对于无检测信号时PNP的接近开关与光电开关输出为低电平(对内部有下拉电阻而言),当有检测信号,内部PNP管导通,开关输出为高电平。 PLC
以上的情况只是针对,传感器是属于常开的状态下。目前可厂商生产的传感器有常开与常闭之分;常闭型NPN输出为低电平,常闭型PNP输出为高电平。因此用户在选型上与供应商配合上经常产生偏差。
另一种情况,用户也遇到SINK接PNP型传感器,SOURCE接NPN型传感器,也能驱动PLC接口,对于PLC输入信号状态则由PLC程序修改。原因是传感器输出有个上拉电阻与下拉电阻的缘故,对于集电极开路的传感器,这样的接法是无效的;另外输出的上拉电阻与下拉电阻阻值与PLC接口漏电流参数有很大关系。并非所有的传感器与PLC都可以通用,对于此类问题可以参考笔者的另一文《接近开关、光电开关的输出与负载接口问题》,在此不再赘述。
SINK漏型、SOURCE源型在下文有详细图解描述。
3、按电源配置类型
3.1、直流输入电路
如图1,直流输入电路要求外部输入信号的元件为无源的干接点或直流有源的无触点开关接点,当外部输入元件与电源正极导通,电流通过R1,光电耦合器内部LED,VD1(接口指示)到COM端形成回路,光电耦合器内部接收管接受外部元件导通的信号,传输到内部处理;这种由直流电提供电源的接口方式,叫直流输入电路;直流电可以由PLC内部提供也可以外接直流电源提供给外部输入信号的元件。R2在电路中的作用是旁路光电耦合器内部LED的电流,保证光电耦合器LED不被两线制接近开关的静态泄漏电流导通。 PLC资料网
3.1、交流输入电路
如图2,交流输入电路要求外部输入信号的元件为无源的干接点或交流有源的无触点开关接点,它与直流接口的区分在光电耦合器前加一级降压电路与桥整流电路。外部元件与交流电接通后,电流通过R1,C2经过桥整流,变成降压后的直流电,后续电路的原理与直流的一致。交流PLC主要适用相对环境恶劣,,布线技改变动不大等场合;如接近开关就用交流两线直接替代原来行程开关。
4:按端口类型
4.1单端共点(Comcon)数字量输入方式
为了节省输入端子,单端共点输入的结构是在PLC内部将所有输入电路(光电耦合器)的一端连接在一起接到标示为COM的内部公共端子(internal comcon terminal),各输入电路的另一端才接到其对应的输入端子X0、X1、X2、....,com共点与N个单端输入就可以做N个数字量的输入(N+1个端子),因此我们称此结构为"单端共点"输入。
用户在做外部数字量输入组件的接线时也需要同样的作法,需要将所有输入组件的一端连接在一起,叫输入组件的的外部共线(external comcon wire);输入组件的另一端才接到PLC的输入端子X0、X1、X2、....。
如果COM为电源24V+(正极),外部共线就要接24V-(负极),此接法称SINK(sink Current 拉电流)输入方式;也称之PLC接口共电源正极。
如果COM为电源24V-(负极),外部共线就要接24V+(正极),此接法称SRCE(source Current 灌电流)输入方式;也称之PLC接口共电源负极。
SINK(sink Current 拉电流)输入方式,可接NPN型传感器,即X端口与负极相连。
SRCE(source Current 灌电流)输入方式,可接PNP型传感器。即X端口与整机极相连。
为了适应各地区的使用习惯,内部公共端子有的厂家的PLC是采用S/S端子,此端子可以与电源的24V+(正极)或24V-(负极)相连,结合外部共线接线变化使PLC可以 SINK(sink Current 拉电流)输入方式,可接NPN型传感器和SRCE(source Current 灌电流)输入方式,可接PNP型传感器。较采用COM端的PLC更灵活。S/S端子的发展是为了适用日系与欧系PLC混合使用工控场合,起到通用的作用,S/S端子也称之 SINK/SRCE可切换型。
PLC资料网
(外部输入组件可以为按钮开关、行程开关、舌簧开关、霍尔开关、接近开关、光电开关、光幕传感器、继电器触点、接触器触电等开关量的元件。)
4.1.1 SINK(sink Current 拉电流)输入方式
●单端共点SINK输入接线(内部共点端子COM→24V+,外部共线→24V-)。如图3:
4.1.2 SRCE(source Current 灌电流)输入方式
● 单端共点SRCE输入接线(内部共点端子COM→24V-,外部共线→24V+)。如图4:
PLC
4.1.3 SINK/SRCE可切换输入方式
S/S端子与COM端不同的是,COM是与内部电源正极或负极固定相连,S/S端子是非固定相连的,根据需要才与内部电源或外部电源的正极或者负极相连。
● 单端共点SINK输入接线(内部共点端子S/S→24V+,外部共线→24V-)。
● 单端共点SRCE输入接线(内部共点端子S/S→24V-,外部共线→24V+)。
4.2.4:当有源输入元件(霍尔开关、接近开关、光电开关、光幕传感器等)数量比较多,消耗功率比较大,PLC内置电源不能满足时,需要配置外置电源。根据需求可以配24VDC,一定功率的开关电源。外置电源原则上不能与内置电源并联,根据COM与外部共线的特点, SINK(sink Current 拉电流)输入方式时,外置电源与内置电源正极相连接; SRCE(source Current 灌电流)输入方式时,外置电源与内置电源负极相连接。 PLC
4.2.5:简单判断SINK(sink Current 拉电流)输入方式,只需要Xn端与负极短路,如果接口指示灯亮就说明是SINK输入方式。共正极的光藕合器,可接NPN型的传感器。 SRCE(source Current 灌电流)输入方式,将Xn端与正极短路,如果接口指示灯亮就说明是SRCE输入方式。共负极的光藕合器,可接PNP型的传感器。
4.2.4:对于2线式的开关量输入,如果是无源触点,SINK与SRCE按上图的输入元件接法,对于2线式的接近开关,需要判断接近开关的极性,正确接入。我公司部分2线式的LJK系列接近开关也有不分极性即可接入接口的,具体参考附带产品说明书。4.2、超高速双端输入电路
主要用于硬件高速计数器(HHSC)的输入使用,接口电压为5VDC,在应用上为确保高速及高噪音抗性通常采用双线驱动方式(Line-Drive)。如果工作频率不高与噪音低也可以采用5VDC的单端SINK或者SRCE接法,串联一个限流电阻转换成24VDC的单端SINK或者SRCE接法。
4.2.1、双输入端双线驱动方式(Line-Drive)。
4.2.2、5VDC的单端SINK或者SRCE接法。
4.2.3、24VDC的单端SINK或者SRCE接法。
PLC
注:24VDC供电的传感器,在输入回路上需要串联限流电阻,R1为10Ω,R2为2KΩ,不串联限流电阻,将烧毁接口回路,限流电阻取值2.7KΩ。
四:外部输入元件
1:无源干接点(按钮开关、行程开关、舌簧磁性开关、继电器触点等)
无源干接点比较简单,接线容易。不存在电源的极性,压降等因素,上图3-6中的输入元件这是此类型。这里不重复介绍。
2:有源两线制传感器(接近开关、有源舌簧磁性开关)
有源两线接近开关分直流与交流,此传感器的特点就是两根线,传器输出端导通后,为了保证电路正常工作需要一个保持电压来维持电路工作,通常在3.5-5V的压降,静态泄露电流要小于1mA,这个指标很重要;如果过大,在接近开关没检测信号时,就使PLC的输入端的光电耦合器导通。我公司的LJK系列两线制接近开关静态泄露电流控制在0.35-0.5mA之间适应各类型PLC。 PLC资料网
直流两线制接近开关分二极管极性保护与桥整流极性保护,前者在接PLC时需要注意极性,后者就不需要注意极性。有源舌簧磁性开关主要用在汽缸上做位置检测,由于需要信号指示,内部有双向二极管回路,因此也不需要注意极性;交流两线制接近开关就不需要注意极性。如图10:
2.1、单端共点SINK输入接线(内部共点端子COM→24V+,外部共线→24V-)。如图11
2.2、单端共点SRCE输入接线(内部共点端子COM→24V-,外部共线→24V+)。如图12:
PLC
2.3、S/S端子接法参考图5-图6以及图11-图12。
3:有源三线传感器(电感接近开关、电容接近开关、霍尔接近开关、光电开关等)
直流有源三制线接近开关与光电开关输出管使用三极管输出,因此传感器分NPN和PNP输出,有的产品是四线制,有双NPN或双PNP,只是状态刚好相反,也有NPN和PNP结合的四线输出。
NPN型当传感器有检测信号VT导通,输出端OUT的电流流向负极,输出端OUT电位接近负极,通常说的高电平翻转成低电平。
PNP型当传感器有检测信号VT导通,正极的电流流向输出端OUT,输出端OUT电位接近正极,通常说的低电平翻转成高电平。
电路中三极管的发射极上的电阻为短路保护采样电阻2-3Ω不影响输出电流。三极管的集电极的电阻为上拉与下拉电阻,提供输出电位,方便电平接口的电路,另一种输出的三极管集电极开路输出不接上拉与下拉电阻,更多问题可以参考《接近开关、光电开关的输出与负载接口问题》的文章。
PLC资料网
简单说当三极管VT导通,相当与一个接点导通,如图13:
3.1单端共点SINK输入接线(内部共点端子COM→24V+,外部共线→24V-)。如图14:
2.2、单端共点SRCE输入接线(内部共点端子COM→24V-,外部共线→24V+)。如图15:
PLC资料网
2.3、S/S端子接法参考图5-图6、图11-图12以及图14-图15。
五、结束语
PLC输入接口电路形式和外接元件(传感器)输出信号形式的多样性,因此在PLC输入模块接线前必要了解PLC输入电路形式和传感器输出信号的形式,才能确保PLC输入模块接线正确无误,在实际应用中才能游刃有余,后期的编程工作和系统稳定奠定基础。
- 西门子CPU模块1214C DC/DC14输入/10输出,6ES7214-1HG40-0XB0
- 西门子CPU1214FC DC/DC/继电器14 输入/10输出6ES7214-1HF40-0XB0
- 西门子CPU模块1214C DC/DC/DC 14输入/10输出6ES7214-1AG40-0XB0
- 西门子S7-1200CPU1214C AC/DC4输入/10输出6ES7214-1BG40-0XB0
- 西门子S7-1200 6ES7214-1HG40-0XB0处理器模块紧凑型CPU 1214C
- 6ES7214-1BD23-0XB8 人机界面
- 西门子Siemens电源6ES7214-2BD23-0XB8 CPUPLC模块技术参数和供应
- 西门子控制器6ES7214-2AD23-0XB8
- 西门子控制器6ES7214-1BD23-0XB8
- 西门子控制器6ES7214-1AD23-0XB8