6GK7243-1GX00-0XE0供应现货
6GK7243-1GX00-0XE0供应现货
、引言
随着工业生产自动化水平的不断加快,对控制系统提出了愈来愈严格的要求。随着大规模集成电路广泛应用,控制系统本身也得到长足发展,已由原来的分立元件、继电器控制,发展成为大规模集成电路的微机控制。控制方式也由原来的分散控制发展为集中控制。正是在这种发展的需求下,可编程控制器应运而生。由于可编程控制器(PLC)具有体积小、抗干扰能力强、组态灵活等优点,因而在工业控制系统中得到非常广泛的应用。
在电缆自动生产线检测控制系统中,可编程控制器主要用作下位机,检测各状态点的状态,直接控制系统的启、停和其他控制单元的投切,并将各点的状态送给上位机——计算机,计算机综合可编程控制器和其他设设备的数据,作出相应的处理和显示。关于整个系统的设计与实现另文介绍,本文主要介绍该系统中用作下位机的可编程控制器的作用、与计算机的通讯及程序设计方法。
二、可编程控制器的性能特点
用于控制系统中的可编程控制器是以循环扫描的方式工作,它不断读取输入点的状态,然后按照既定的控制方式进行逻辑运算,将结果从输出端送出,从而达到控制的目的。它是由工业专用微型计算机、输入/ 输出继电器、保护及抗干扰隔离电路等组成的微机控制装置,具有顺序、周期性工作的特性。由于它具有可编程的功能,且其基本输入/输出点全部使用开关量,因而完全可以替代继电器控制系统和由分立元件构成的控制系统。从应用角度来看,可编程控制器具有如下特点:
1、可靠性高:可编程控制器的输入/ 输出端口均采用继电器或光耦合器件,即基本输入/ 输出点均为开关量,同时附加有隔离和抗干扰措施,使其具有很高的抗干扰能力,因而能在比较恶劣的环境下可靠工作。
2、体积小:在制造时采用了大规模集成电路和微处理器,用软件编程替代了硬连线,达到了小型化,便于安装。
3、通用性好:可编程控制器采用了模式化结构,一般有CPU模块、电源模块、通讯模块、PID模块、模拟输入/ 输出模块等。用这些模块可以灵活地组成各种不同的控制系统。对不同的控制系统,只需选取不同的模块设计相应的程序即可。
4、使用方便、灵活:对于不同的控制系统,当控制对象及输入/ 输出硬件结构选定后,若要改变控制方式或对控制对象作一些改动,只需修改相应程序即可,无须对系统连线作较大的修改。从而减少了现场调试的工作量,提高了工作效率。
三、用作下位机的可编程控制器
由于可编程控制器具有上述特点,因而在检测和控制系统中得到广泛应用。但因其专用性太强以及受输入/ 输出节点数的限制,在由可编程控制器构成的系统中,可编程控制器主要用来完成组合逻辑与时序逻辑的输入/ 输出控制。另外,由于可编程控制器无法以比较灵活的方式显示当前各个输入/ 输出点的状态,不能以多种方式提供整个系统的运行情况,因而,在用可编程控制器构成比较大的检测控制系统时,一般用可编程控制器完成信号的采集和控制,比较复杂的数据处理、图形显示、人机界面等由计算机来完成。
在电缆自动生产线检控系统中,可编程控制器作为下位机用来控制各种电机、风机的启、停,调速器的投切,读取各控制点的状态,然后将各点的状态输入到上位机——计算机。计算机处理可编程控制器和其他设备的信息,以图表的方式显示,使操作者对生产线的工作状态一目了然。计算机和可编程控制器的硬件连接及可编程控制器与各控制端、状态点的连接如图1所示。
图1 可编程控制器接线示意图
图1中,输入到可编程控制器的检测点可分为按键类和光电开关类。按键类主要有:启动、停止、帮助、诊断、查询、复位按键等。光电开关类主要有:张力轮位置、张力杆位置、左右托位置、左右盘位置、抓勾位置、左右防护位置、排线位置、排架位置、光电开关等。可编程控制器的输出用来控制循环水、退火水、吹干风机及各种电机的启停等。
可编程控制器不断读取输入端,按既定的控制方式对输入端的状态进行逻辑运算,然后将运算结果经输出端输出(即进行控制),从而保证生产线的可靠、连续运行,同时将本系统的状态按某种协议反映给上位机,上位机处理可编程控制器和其它设备的信息,作出响应,并以图表的方式显示,使操作者能随时掌握生产线的工作状态,以便在需要时进行调试。
四、通讯连接及程序设计
上位机和下位机进行数据交换的方式有很多,如网络方式、485方式、RS232方式等。由于在电缆生产线中,上、下位机之间距离较近,因而我们选用了RS232方式,其硬件连接如图2所示。
图2 可编程控制器与计算机连接示意图
图2是我们使用三菱公司的FX2可编程控制器与计算机的连接方法。可编程控制器端使用了FX - 232ADP串行通讯模块,即可编程控制器与计算机之间以RS232方式进行数据交换。当可编程控制器与计算机的距离比较远时,也可以485方式进行数据交换,只要在计算机中插一个485接口板,并将可编程控制器的ADP - 232模块换成485模块即可。
1、可编程控制器通讯程序设计
在可编程控制器与计算机通讯之前,必须设置相互认可的参数,这些参数有:波特率、停止位和奇偶校验位等。可编程控制器通讯参数通过寄存器D8120的位组合方式来选择,其各位定义如下:
b0 数据长度:= 0 ,7位; = 1, 8位
b2b1 校验: = 00,无校验; = 01,奇校验; = 10, 偶校验
b3 停止位: = 0, 1位; = 1, 2位
b7b6b5b4 波特率;
= 0011, 300 bps; = 0100, 600 bps;
= 0101, 1200 bps; = 0110, 2400 bps;
= 0111, 4800 bps; = 1000, 9600 bps;
= 1001, 19200 bps;
可编程控制器通讯适配器FX - 232ADP的命令为Ram ò n,其中S设定了传送数据的缓冲区首址,m为从首地址开始的第m个顺序单元,D为接收数据的缓冲区首址,n为接收数据的n个顺序单元。可编程控制器完成一次传送的程序流程如图3 所示。
图3 可编程控制器发送数据流程
M8000是当PLC运行时,处于接通状态的特殊辅助继电器。
可编程控制器是以循环扫描的方式工作(如图4 (b)所示),即按顺序反复地执行一条一条指令。如图4(b)所示,IN为一组输入指令,即一组将接点状态读入可编程控制器的指令,MEM为一组记录接点状态的指令,CAL为若干条完成控制所需的计算、处理指令,OUT为执行控制和一组输出指令,TRN为若干条向串行口发送数据的指令,依次反复执行IN、MEN、CAL、OUT、TRN,从而完成控制和数据交换的任务。由此可见,可编程控制器从串行口送出的数据是一个分段连续的数据流,如图4 (a)所示。
(a) 可编程控制器发送的数据流
(b) 可编程控制的工作流程
图4
图中Dn(n=1, 2……N)为连续从串行口输出的N个数据,在TRN之外的时间里串行口并不工作。这样,当计算机在接收可编程控制器的数据时,就需作如下考虑:
1) 首先应找到数据流的首部,因为计算机对可编程控制器的访问具有很大的随机性,当计算机在读串行口时,有可能读到的是数据流中的任何一个数据,因而,只有找到数据流的首部,然后读到的数据才是正确的、完整的数据。
2) 计算机读串行口时,应有足够的等待时间,如果计算机读串行口时,恰好读到的是数据2(D2),由于本次读到的数据不是完整的,因此计算机大约需要等可编程控制器的一个扫描周期才能读到一组完整的数据。
2、计算机通讯程序设计
在设计电缆自动生产线检测控制系统时,我们已明确了可编程控制器向计算机发哪些数据,即计算机读可编程控制器数据的个数M已知,因此可以用该数据个数M来判断所读数据是否完整。初始化串行口就是将可编程 控制器和计算机串行口的波特率、停止位、校验位、数据位等设置为相同。为了使计算机能够准确找到数据流的首部,我们根据该数据流的特点和可能出现的情况,定义了03FFFF为数据流的首部,即可编程控制器发送的个数据为03,第二个数据为FF,第三个数据为FF,然后依次发送可编程控制器的数据。计算机读取数据时,首先检查读到的是不是03,如果是03,再读下一个数据并检查是否为FF,若是,再读下一个数据并检查是不是FF,若是,则认为读到了数据流的首部,接着读取数据,如果上述任意一项检查不符,则认为没有读到数据流的首部,再重复上述检查,直至读到数据流的首部为止。这样既保证了数据交换的正确性,也保证了数据交换的完整性。
,我们在分析了可编程控制器的工作流程、串行口工作方式和系统工作情况的基础上,设计了数据流的首标志,设定了传送数据的个数,以此来判断计算机所读取数据的位置及数据的完整性,并以这种方式设计了通讯程序,实际证明效果良好。
五、结论
本文简要介绍了可编程控制器的性能、特点,在电缆自动生产线中将可编程控制器与计算机以RS - 232的方式连接,并设计了相应程序。按照这种连接和设计,我们完成了计算机与可编程控制器的通讯,实现了电缆生产线的检测控制系统,实际运行良好
引言
沧州炼油厂炼油三部沥青车间现有年产十万吨道路沥青装置一套,车间配套有装车用桥式起重机两台,该桥式起重机是张家口起重机厂1979年10月生产,我厂1980年4月投用,经过20多年的使用,该设备已经非常陈旧,且随着近几年产量的增加,起重机使用频率增加,天车故障频发,沥青桥式起重机(又称天车)的电气维护一直是我们日常维护的一项重要工作,往往投入了大量的人力物力,还不能保证天车的正常使用,每年都消耗大量的材料费用。为解决该问题,2004年4月份我们组织了技术人员进行了QC攻关,经过比较决定采用施耐德公司生产的Modicon TSX Neza PLC,代替原电路中的JT3-11/1时间继电器,改造后,经过两年的使用,效果良好。
1、控制电路的分析与改造
在桥式起重机电路中,故障发生比较多的是抓斗提升、张合部分的控制电路,抓斗提升、张合主电路如下:
原控制电路如下:
图中,KM11、KM33、KM22、KM44分别是控制抓斗提升、张合的主接触器,KM1~KM6是切除电阻的接触器,KT1~KT6是时间继电器,时间继电器的作用是分级延时接触启动电阻,由于动作频繁所以故障频发。我们通过分析可以看出:1) 由于时间继电器的型号是JT3-11/1-110V,因此工作回路是一个半波整流降压回路,要使JT3-11/1正常工作,该回路中的二极管、降压电阻、接触器辅助接点均应可靠工作;2)JT3-11/1型号的时间继电器的辅助接点导致电气故障经常发生的一个主要点,如机构故障、接点接触不良故障,检修起来非常烦琐;3)JT3-11/1的线圈本身也经常出现短路和断路故障;另外,在这部分控制电路中,切除电阻的接触器和时间继电器辅助触点相互控制,互为因果,电路比较复杂。我们通过以上分析可以看出:无论哪一点出问题,都会导致抓斗电动机直接起动,使电机的起动转矩大大下降,如果发现不及时,极易烧坏电机。
施耐德公司生产的Modicon TSX Neza PLC功能比较丰富,容易使用且工作可靠,CPU单元具有12点输入和8点输出的20点I/O的基本结构,可根据需要多连接3个扩展模块扩展至80个I/O点。根据原电路要求,我们用两个Modicon TSX Neza PLC更换了六个时间继电器,用PLC的输出节点对KM1~KM6接触器进行控制。改造后的原理图如下:
图一Modicon TSX Neza PLC的电源回路:
图二Modicon TSX Neza PLC的输出回路:
由于Modicon TSX Neza PLC一接通电源就运行其中的程序,因此通过抓斗主接触器来控制Neza PLC是否运行。我们对Neza PLC进行了编程,使其输出节点依据设定的延时时间依次导通,达到原电路的动作要求。考虑到Neza PLC的安全运行,我们实测了接触器(CJ12-100)线圈的实际工作电流是0.7A,为了防止线圈烧毁而损坏继电器的输出接点,该接点的额定电流是2A,在输出回路中串联了一个2A的保险管,保障该回路的接点不致被损坏。
2、抗干扰措施
由于PLC的安装地点是在桥式起重机的电气控制箱上,处在强电电路和强电设备所形成的恶劣电磁环境中。要提高PLC控制系统可靠性,一方面要求PLC生产厂家提高设备的抗干扰能力;另一方面,要求工程设计、安装施工和使用维护中引起高度重视,多方配合才能完善解决问题,有效地增强系统的抗干扰性能。
对此,我们采用了以下对策:
1、 采用性能优良的电源,抑制电网引入的干扰
在PLC控制系统中,电源占有极重要的地位。电网干扰窜入PLC控制系统主要通过PLC系统的供电电源(如CPU 电源、I/O电源)等进入的。对于给PLC系统供电的电源,我们采用隔离性能较好电源。
2 、电缆选择的铺设
为了减少动力电缆辐射的电磁干扰,我们选用了屏蔽电缆。在工程中,采用铜带铠装屏蔽电力电缆,可以大大降低动力线产生的电磁干扰,使工程取得满意的效果。
不同类型的信号分别由不同电缆传输,信号电缆应按传输信号种类分层铺设,严禁用同一电缆的不同导线同时传送动力电源和信号;避免信号线与动力电缆靠近平行铺设,以减少电磁干扰。
3、结论与效果
我们改造后的电路简单,使用可靠,维护方便,从2004年6月份投用以来,两部桥式起重机的改造电路故障率为零,节省了大量人力物力,降低了劳动强度,并且每年可节约几万元的材料消耗,解决了多年沥青桥式起重机电气部分频繁故障的一个重大难题。
一、引言
随着微电子技术和计算机技术的发展,可编程序控制器有了突飞猛进的发展,其功能已远远超出了逻辑控制、顺序控制的范围,它与计算机有效结合,可进行模拟量控制,具有远程通信功能等。有人将其称为现代工业控制的三大支柱(即PLC,机器人,CAD/CAM)之一。目前可编程序控制器(Programmable Controller)简称PLC已广泛应用于冶金、矿业、机械、轻工等领域,为工业自动化提供了有力的工具。
二、PLC的基本结构
PLC采用了典型的计算机结构,主要包括CPU、RAM、ROM和输入/输出接口电路等。如果把PLC看作一个系统,该系统由输入变量-PLC-输出变量组成,外部的各种开关信号、模拟信号、传感器检测的信号均作为PLC的输入变量,它们经PLC外部端子输入到内部寄存器中,经PLC内部逻辑运算或其它各种运算、处理后送到输出端子,它们是PLC的输出变量,由这些输出变量对外围设备进行各种控制。
三、控制方法及研究
1、FP1的特殊功能简介
(1) 脉冲输出
FP1的输出端Y7可输出脉冲,脉冲频率可通过软件编程进行调节,其输出频率范围为360Hz~5kHz。
(2) 高速计数器(HSC)
FP1内部有高速计数器,可同时输入两路脉冲,高计数频率为10kHz,计数范围-8388608~+8388607。
(3) 输入延时滤波
FP1的输入端采用输入延时滤波,可防止因开关机械抖动带来的不可靠性,其延时时间可根据需要进行调节,调节范围为1ms~128ms。
(4) 中断功能
FP1的中断有两种类型,一种是外部硬中断,一种是内部定时中断。
2、步进电机的速度控制
FP1有一条SPD0指令,该指令配合HSC和Y7的脉冲输出功能可实现速度及位置控制。速度控制梯形图见图1,控制方式参数见图2,脉冲输出频率设定曲线见图3。
3、控制系统的程序运行
图4是控制系统的原理接线图,图4中Y7输出的脉冲作为步进电机的时钟脉冲,经驱动器产生节拍脉冲,控制步进电机运转。同时Y7接至PLC的输入接点X0,并经X0送至PLC内部的HSC。HSC计数Y7的脉冲数,当达到预定值时发生中断,使Y7的脉冲频率切换至下一参数,从而实现较准确的位置控制。实现这一控制的梯形图见图5。
控制系统的运行程序:句是将DT9044和DT9045清零,即为HSC进行计数做准备;第二句~第五句是建立参数表,参数存放在以DT20为首地址的数据寄存器区;后一句是启动SPD0指令,执行到这句则从DT20开始取出设定的参数并完成相应的控制要求。
由句可知个参数是K0,是PULSE方式的特征值,由此规定了输出方式。第二个参数是K70,对应脉冲频率为500Hz,于是Y7发出频率为500Hz的脉冲。第三个参数是K1000,即按此频率发1000个脉冲后则切换到下一个频率。而下一个频率即后一个参数是K0,所以当执行到这一步时脉冲停止,于是电机停转。故当运行此程序时即可使步进电机按照规定的速度、预定的转数驱动控制对象,使之达到预定位置后自动停止。
三、结束语
利用可编程序控制器可以方便地实现对电机速度和位置的控制,方便可靠地进行各种步进电机的操作,完成各种复杂的工作。它代表了先进的工业自动化革命,加速了机电一体化的实现。
近年来,人们更关注的是步进电机的变频特性。由于事物变化的不均匀性,定频技术越来越显示出它的局限性,而变频技术却能很好地适应各种随机变化的系统。本文就是介绍采用PLC控制的步进电机的变频特性,使其运用在纺织机的送经装置中。
用可编程控制器(PLC)产生各种步进脉冲驱动步进电机去达到各种控制、测试目的己屡见不鲜了。步进电机由于具有转子惯量低、定位精度高、无累积误差、控制简单等特点,成了工控的主要执行元件之一,尤其是在jingque定位场合中得到了广泛的应用。但近年来,人们更关注的却是它的变频特性。由于事物变化的不均匀性,定频技术越来越显示出它的局限性,而变频技术却能很好地适应各种随机变化的系统。
PLC对步进电机的控制
PLC是广泛应用于工业自动化领域的控制器,它的功能越来越强,性能越来越先进。为了配合步进电机的控制,许多PLC都内置了脉冲输出功能,并设置了相应的控制指令,可以很好地对步进电机进行控制,图1是松下FP0-C16T晶体管输出型PLC的输出电路结构。
图1 PLC输出电路图
FP0-C16T型PLC有两个脉冲输出端Y0和Y1端,随着控制方式的不同,有三种脉冲输出形式。
(1) 这两个脉冲输出端可以用来作为两个不带加减速的单相脉冲输出端,主要使用PLS和SPD1指令进行控制,颠率范围为0Hz_10KHz,可以连续输出,也可以脉冲中形式输出,可以同时单独输出。
(2) 可以作为两相可变占空比的连续脉冲输出端,主要使用PWM指令控制,占空比设置范围为0%_。频率设置范围0.1Hz_999.9Hz。
(3) 可以作为带梯形加减速的两相脉冲输出,主要使用PULS和SPD1指令控制,频率变化范围0Hz_10KHz,加减速率10Hz/10ms_10KHz/10ms,可以连续输出,也可以脉冲串形式输出,这里又分为两种控制方式,一种是脉冲+方向控制(Y0、Y1输出脉冲,Y2、Y3输出方向),一种是正反向脉冲输出(Y0输出CW脉冲,Y1输出CCW脉冲)。如果使用Y0、Y2分别进行脉冲、方向控制,控制系统如图2所示。如果使用Y0作为脉冲输出,可以通过如图3所示的方法实现两相脉冲输出。
图2 脉冲、方向输出图
图3 双脉冲输出图
PLC控制步进电机在送经装置上的应用
采用PLC控制的步进电机的变频特性运用在纺织机的送经装置中很好地解决了经纱内部张力不均匀的问题,使产品的质量产生了质的飞跃。
(1) 经纱张力信号检测
本装置是通过检测后梁的摆动是否超出范围来检测经纱张力的波动是否满足要求,不满足要求时就控制送经装置予以调整。如图4,当经纱2的张力发生波动时,活动后梁4带动张力感应杆5绕点O摆动。当检测片6进入接近开关7的有效作用区时,接近开关7就发出一高电平信号。以PLC为核心的控制器根据这一信号和主轴位置信号,启动步进电机13,驱动织轴送出经纱。接近开关7’是极限张力检测开关。当经纱张力过大或过小时,检测片6将遮挡接近开关7’,7’输出的高电平信号到控制器后,控制器就会关掉织机,以便进行人工处理。主轴位置的检测是为了控制送经运动的允许时间,以避开打纬,保证纬纱能被打紧。主轴位置的检测同样采用的是接近开关非接触式检测。
图4 送经装置结构图
(2) 织轴驱动系统
织轴驱动系统由步进电机驱动器、步进电机、蜗轮减速器和织轴四部份组成。它的作用原理是:控制系统送来的信号经驱动放大处理后,驱动步进电机转动,然后经过减速器减速,再传动织轴,放出经纱。
对于织机送经机构,其负载特点是:当步进电机正转送出经纱时,经纱张力不是负载阻力,而是驱动力。因此步进电机只需输出较小力矩,克服蜗杆蜗轮自锁性,织轴即可回转经。此时步进电机转速可能较高(由纬密定);当步进电机反转张紧经纱时,经纱张力是负载阻力,步进电机需输出较大的驱动转矩,而此时步进电机转速要求较低,步进电机的输出矩频特性(如图5虚线所示)正好与其相适应。因此、步进电机非常适合于这类伺服机构低转速大转矩、高转速小转矩和高精度的要求,是织机送经机构理想的驱动元件。
图5 织机送经装置负载转矩图
送经装置采用的是2相56系列步进电机DM5676A。它的技术指标如下:步距角:1.8_;相电流:2.0A;保持转矩:1.35Nm;静转矩:0.07Nm;转动惯量:4.6*10-5Kgm2。反应式步进电机具有结构简单,经久耐用,力矩-惯性比高、步进频率高、响应快、步距角小等优点,是目前国内外应用多的一种步进电机。
由于步进电机调速方便、调速范围宽,所以步进电机送经装置不用变换齿轮也能满足纬密2_120根/cm。电子送经装置则不能做到这一点,在此纬密范围内至少需要三档变换齿轮。步进电机送经装置的技术指标如下:
结 语
实验效果表明,本文研制的步进电机送经装置性能良好,工作可靠。配上多种功能的人机界面后可以实现织轴收放经纱的可视化操作,改变纬密的键盘输入,防止开车横挡,出现异常情况时自动关车报警等功能。