西门子模块6ES7214-1AD23-0XB8货期较快
西门子模块6ES7214-1AD23-0XB8货期较快
对于象龙门铣床这样的大型机械,需要用两个电机同时推动横梁或工作台,因此要求这两个电机完全同步的工作,在数控系统中,这一功能称为"伺服同期".三菱数控系统具有此功能,笔者近采用三菱m64s系统+mds-r-v型驱动器配备在某客户的中型龙门铣上,采用了"伺服同期"功能,构成了半闭环系统,取得加工良好效果。
1.伺服同期功能的实现
图1. 编制伺服同期运行的程序
要实现伺服同期功能,必须在plc梯形图上编制相关程序:
在三菱m64cnc的接口中,r435是一确定伺服同期功能的数据寄存器.对r435设定不同的数值,可以指定任意两轴进入"伺服同期"模式.本文中指定第1轴和第4轴同期.第1轴为基准轴(x),第4轴为从动轴(a).
修正模式在调试初期经常用到.对于半闭环系统,当机械精度影响到两轴不平衡时,会引起"同期误差过大"报警,这时必须进入"修正模式",对其中某一轴进行调整.在"修正模式"下,只能用"手轮模式"进行操作.修正模式的接口是――y22a.
图2
2.相关的参数
参数#1068————————-该参数指定"从动轴的轴号".(必须在基准轴名下设置)
参数#2024——————————设定同期误差值(只在基准轴名下设置)
图3
3.原点的设置
对伺服同期的两伺服轴,其原点设置究竟该两轴分别设置原点还是只设置一个原点?从理论上来说当然应该每一轴各自设置原点.但从实际来看,两装在龙门铣床的横梁两端,在运行过程中,由于机械精度误差的影响,当某1轴的实际运行距离超前或落后另1轴2mm时,就会引起其中1轴的报警(电流过大)。
而如果每一轴分别设置原点,将給两个原点开关的安装,调整带来极大的困难.而且对于龙门铣,两伺服轴同时进退运动,其中1轴到达机床原点位置,另1轴到达的位置也可视为其原点位置.两轴的行程误差只要超过某一值就会产生"(电流过大)"报警.所以不会产生某1轴"虚假回原点"的问题。
因此在实际调试过程中,对两伺服同期轴只设置了一个原点信号,将该原点信号设置在基准轴一边。
4. 回原点过程中遇到的问题
即使只设置了一个原点,在执行回原点操作时仍然出现下列情况:当基准轴回到原点后,从动轴屡屡出现"(电流过大)"报警.无法完成两个轴同时回原点的操作.当然也就无法进入自动状态。
启动伺服同期功能后,在点动操作和手轮操作时,由于机械安装和丝杆精度的影响,每每只运行30――50mm,就会出现"(电流过大)"报警.现场调试时解决的办法是将参数#2213(电流限制值)调大(大值是静态额定电流的500%).但如果该参数过大.有可能损害机械系统,特别是对新装配的机床而言,应该谨慎的调整#2213参数.根本的解决之道是在回原点操作完成后,马上执行机械精度误差补偿.使精度和实际精度相一致。
但是,现在连回原点都遇到了问题……….
在显示屏上仔细观察,回原点的过程的报警现象是这样发生的:当基准轴(x)回到原点后,从动轴(a)继续运行1.6――1.8mm后发生报警.这说明两轴的电气原点之差至少达到2-3mm。
在仔细分析了回原点的各个参数后,可以看到参数#2028(栅罩量),#2027(原点偏移量)为关键.其中参数#2027(原点偏移量)指"电气原点到实际原点之间的距离".现在两个轴之间的原点存在偏差.通过调整参数#2027,可以使其达到一致.参数#2027的单位是1/1000 mm.设置基准轴(x)的#2027=3000, 再进行回原点操作,果然两轴同时回原点完成.证明以上的分析是对的。
图4
为了使两轴的原点达到相对的一致.利用显示器上的"伺服监视"画面,监视基准轴(x)的电流值,反复调节参数#2027,当基准轴(x)的电流值<20%时,可以认为达到基本要求了。
5. 机械精度误差的补偿
对于伺服同期的双驱动系统,在完成回原点操作后必须立即进行"机械精度误差的补偿",很明显,如果不做"机械精度误差的补偿",由于机械误差的原因,会经常引起"电流过大"报警.这可以认为是一次初期补偿,待磨合后,应该再进行一次补偿。
6. 软极限引起的问题
伺服同期的双驱动系统在运行中遇到的另一问题是当其中一轴运行到软限位时,一轴停止,另一轴继续运行,又产生"电流过大"报警.(虽然两轴设定的软限位数值相同.).这种情况显然是机械精度累积误差引起.一旦产生报警,必须用手轮模式对报警轴进行调节.这对于操作工来说很麻烦.如何避免这种情况呢?
一个办法是加装一硬开关,用该信号切断自动和手动运行.但这会增加故障点。
另一办法是用ddb功能在软极限前取一点,用该信号切断自动和手动运行.这个办法不增加成本和故障点.方法如下:
图5. ddb功能的实现
将读出的第1轴和第4轴当前位置数据(d200/d204)与软极限前的一固定点做比较.当第1轴和第4轴当前位置超过该固定点位置时,即切断自动和手动运行.避免了机械碰上软极限.相当于又加上一道保护。
经过以上处理,两同期轴能够正常停止.没有报警出现。
这也是解决机械累积误差的一个有效办法。
1、应用背景
主变压器是水电厂三大设备之一,其主要功能是改变电压等级、输送交流电能。由于结构和工作原理方面的原因,变压器运行时不可避免会产生铁损、铜损,并转化为热量令变压器温度升高。
过高的温度使变压器工作能力和效率降低、绝缘老化、使用寿命降低。因此,变压器冷却装置的可靠运行对于变压器的正常工作异常重要,如我公司《运行规程》规定:变压器带负荷过程中,如全部冷却器失去电源,允许继续运行20 min,但长时间不得超过1 h(视油温而定)。我公司共有4台主变,容量90-150 MVA不等,#2、#3、#4主变冷却器均为强迫油循环风冷却方式。冷却器原自动控制回路主要由常规继电器组成,运行维护中主要存在如下问题:设备残旧,绝缘低,回路元件数量多、接线复杂、通用性差,故障率高等,同时由于使用年限已久,备品备件缺乏,有的回路还存在寄生现象,给检修维护工作造成一定困难,也不能满足公司运行“少人值守”的需要。
因此,公司相关部门对主变冷却器的控制回路提出了技术改进方案,新回路主要采用新型的自带编程器的微型可编程控制器(PLC)替代大部分继电器,使控制线路具有简单可靠、适应性强和功能丰富等特点。下面以#2主变冷却器控制回路改造为例说明可编程控制器的应用。
2、冷却器起停控制、运行监视功能实现
2.1 冷却器自动控制目标
规程规定各种运行状态下须投入冷却器组数见表1。
表1 规程规定各种运行状态下须投入冷却器组数
注:1)根据主变冷却器处于空载或带负荷状态投入位于“工作位置”的冷却器组;
2)当主变油温达到整定值(55℃)或负荷电流大于70%则再投入位于“辅助位置”的冷却器组;
3)当处于“工作位置”或“辅助位置”的冷却器组出现故障不能正常运行时,投入位于“备用位置”的冷却器组。
2.2 冷却器工作状态
#2主变冷却器共8组,分为以下4种状态运行:
状态1:空载1、2组;负载l、2、3、4、5、6组;辅助7组;备用8组
状态2:空载3、4组;负载3、4、5、6、7、8组;辅助1组;备用2组
状态3:空载5、6组;负载5、6、7、8、l、2组;辅助3组;备用4组
状态4:空载7、8组;负载7、8、1、2、3、4组;辅助5组;备用6组
4种状态问的切换每15天一次,由“定时切换”或“人工设定”实现。处于“人工设定”时,由运行人员在触摸屏设定分配冷却器组处于何种状态;当处于“定时切换”方式时,由可编程控制器流程内设定实现自动切换。
2.3 框图
可编程控制器流程的合理设计是回路的正常工作和稳定运行的关键因素。根据冷却器工作特性和控制目标,设定可编程控制器系列框图见图1。
图1 冷却器控制回路框图(PLC部分)
3、运行维护
因流程设计合理简捷,#2主变冷却器控制回路投运后,运行稳定可靠,同时,可编程控制器与触摸屏配合使用,人机界面友好,使日常维护工作变得简单而方便。示例如下。
3.1 接点更改
如#2主变22o2开关辅助接点原来取用的是闭接点,在改为开接点后,只需修改一下PLC流程。
3.2 消除主变温度临界时的影响
因流程内设置冷却器组的起停与主变温度有关,运行中发现,当主变温度表温度在冷却器启动值上下跳动,即处于临界状态时,会导致冷却器瞬间起、停,极容易造成电机损坏,针对这一现象,我们在PLC流程中设了一个延时回路,问题马上得到解决。
3.3 实现“定时切换”功能
改造前,冷却器投入组数等运行方式由运行人员人工定期切换,既繁琐又不方便(主变平台与运行值班室相距较远),现在在PLC流程内部设置即可实现自动“定时切换”,同时周期可任意选择,简单方便,减少了运行人员工作量。
3.4 外部回路异常时的报警功能
由于PLC具有极高的可靠性,因此PLC控制回路中绝大部分的故障不是来自PLC本身,而是由于外部元件故障引起的,例如常见的按钮或继电器触点的熔焊及氧化造成回路短路或开路故障;操作保险熔断使控制回路失电;热元件动作等,PLC一旦自动检测到元件故障,不仅具有报警功能,而且通过触摸屏能立即显示故障状况,使维护人员能迅速判断出故障原因。
4、结束语
#2主变冷却器回路投运后3年多的运行结果表明,以微型可编程控制器为核心的冷却器控制回路能够满足电厂主变冷却器自动控制要求,并且具有先进、可靠、控制性能好等优点。我公司在#2主变冷却器控制回路可靠运行后,又相继完成了#3、#4主变冷却器控制回路的改造,极大地提高了劳动生产率,有效地解决了生产中的很多问题:如减少了生产过程中冷却器的突发故障,缩短了生产准备时间
表1 规程规定各种运行状态下须投入冷却器组数
图1 冷却器控制回路框图(PLC部分)
3、运行维护
因流程设计合理简捷,#2主变冷却器控制回路投运后,运行稳定可靠,同时,可编程控制器与触摸屏配合使用,人机界面友好,使日常维护工作变得简单而方便。示例如下。
3.1 接点更改
如#2主变22o2开关辅助接点原来取用的是闭接点,在改为开接点后,只需修改一下PLC流程。
3.2 消除主变温度临界时的影响
因流程内设置冷却器组的起停与主变温度有关,运行中发现,当主变温度表温度在冷却器启动值上下跳动,即处于临界状态时,会导致冷却器瞬间起、停,极容易造成电机损坏,针对这一现象,我们在PLC流程中设了一个延时回路,问题马上得到解决。
3.3 实现“定时切换”功能
改造前,冷却器投入组数等运行方式由运行人员人工定期切换,既繁琐又不方便(主变平台与运行值班室相距较远),现在在PLC流程内部设置即可实现自动“定时切换”,同时周期可任意选择,简单方便,减少了运行人员工作量。
3.4 外部回路异常时的报警功能
由于PLC具有极高的可靠性,因此PLC控制回路中绝大部分的故障不是来自PLC本身,而是由于外部元件故障引起的,例如常见的按钮或继电器触点的熔焊及氧化造成回路短路或开路故障;操作保险熔断使控制回路失电;热元件动作等,PLC一旦自动检测到元件故障,不仅具有报警功能,而且通过触摸屏能立即显示故障状况,使维护人员能迅速判断出故障原因。
4、结束语
#2主变冷却器回路投运后3年多的运行结果表明,以微型可编程控制器为核心的冷却器控制回路能够满足电厂主变冷却器自动控制要求,并且具有先进、可靠、控制性能好等优点。我公司在#2主变冷却器控制回路可靠运行后,又相继完成了#3、#4主变冷却器控制回路的改造,极大地提高了劳动生产率,有效地解决了生产中的很多问题:如减少了生产过程中冷却器的突发故障,缩短了生产准备时间和抢修时间,减少了维护人员的劳动强度等,推进了我发电公司设备管理现代化发展进程,是运行实行“无人值班”(少人值守)的可靠保
- 西门子CPU模块1214C DC/DC14输入/10输出,6ES7214-1HG40-0XB0
- 西门子CPU1214FC DC/DC/继电器14 输入/10输出6ES7214-1HF40-0XB0
- 西门子CPU模块1214C DC/DC/DC 14输入/10输出6ES7214-1AG40-0XB0
- 西门子S7-1200CPU1214C AC/DC4输入/10输出6ES7214-1BG40-0XB0
- 西门子S7-1200 6ES7214-1HG40-0XB0处理器模块紧凑型CPU 1214C
- 6ES7214-1BD23-0XB8 人机界面
- 西门子Siemens电源6ES7214-2BD23-0XB8 CPUPLC模块技术参数和供应
- 西门子控制器6ES7214-2AD23-0XB8
- 西门子控制器6ES7214-1BD23-0XB8
- 西门子控制器6ES7214-1AD23-0XB8