西门子模块6ES7223-1BH22-0XA8型号含义
西门子模块6ES7223-1BH22-0XA8型号含义
2. 典型问题和解决方法
在实际运用的过程中,如果对PLC的运行原理不了解或理解的不够透彻,那么在程序的编写上很容易出现问题,左图也为单按钮实现启动/停止的梯形图,但在实际的调试中确是不可行的,达不到为我们预期的效果,通过与图2的对比我们发现:在网络1上少一个正向脉冲指令,这个指令是关键。这样我们就清楚问题的所在:由于I0.0.接通的时间比一个扫描周期的时间长,有时为N个或N+1个,要达到我们的目的必须每次都是奇数才可以,所以导致调试时的不成功,因此加一个正向脉冲指令可解决这个问题。同样如果将图2中网络2和网络3颠倒,其结果是Q0.0没有输出,原因是:在一个扫描周期内,网络2和网络3先后接通,然后将运算结果存人映像寄存器当中,所以就不会有任何的输出。
图4
在R/S方法中,容易出现的问题是锁存器的R/S端不能采用图5这种结构,系统会提示错误,所以只能是图2中的结构,才能正确执行。
图5
上述是用单触点实现启动/停止方法中比较常见的典型问题,尤其是初学者容易出现,这些问题虽然不大,但往往都是关键,如果在设计和调试中考虑到这些因素的存在,那会减少错误和缩短调试的周期。
三、硬件方法
1. 优化输入点数
在某些应用场合下有“自动控制/手动控制”的要求,并且在运行过程中,自动和手动不会同时进行,这样就可以将自动和手动按照不同的控制状态分组接入PLC输入端,可减少输入点,提高输入点的利用率,图6中的示例节省了50%的I点,相当于输入点数扩充了一倍。
图6
其中SA为手动/自动切换开关,SBl,SB2,SB3为一组输入,SBl0,SB20,SB30为一组输入。
在某些联锁情况下,如果PLC内部不采集该触点信号的状态,可采用物理联锁的方式进行,即硬件连接上进行联锁(不必每一个开关量都接到PLC的输入端),也可在一定程度上减少输入点数。
2. 优化输出点数
除了优化输入点数外还可优化输出点数,对系统整个运行过程中,输出状态完全一样的执行元件可以采用并联的方式,但要注意负载的功率情况,通常情况下采用继电器加续流二极管。此外还可以采用三八线译码器等方法,但需采用外部元器件,操作略微复杂一些。
四、结论
上述的几种方法虽然比较简单,但切实可行并且容易掌握,在不同的PLC中实现的途径略微不同,但基本思路都是一致的,通过对系统的优化可以进一步提高I/O的利用率,节省输入和输出点的数量,减少PLC的体积,降低硬件成本,具有很高的实用价值。
(3)模拟量模块与PLC的通讯
对于与FX2N系列PLC的连接编程主要包括不同通道数模转换的执行控制,数字控制量写入FX2N-2DA等等。而重要的则是对缓冲存储器(BFM)的设置。通过对该模块的认识,BFM的定义如附表。
附表 BFM的定义
从附表中可以看出起作用的仅仅是BFM的#16、#17,而在程序中所需要做的则是根据实际需要给予BFM中的#16和#17赋予合适的值。其中:
#16为输出数据当前值。
#17:b0:1改变成0时,通道2的D/A转换开始。
b1:1改变成0时,通道1的D/A转换开始。
(4)控制系统编程
对于上例控制系统的编写程序如图4所示。
图4 控制系统编程
在程序中:
1) 当M67、M68常闭触点以及Y002常开触点闭合时,通道1数字到模拟的转换开始执行;当M62、M557常闭触点以及Y003常开触点闭合时,通道2数字到模拟的转换开始执行。
2) 通道1
将保存个数字速度信号的D998赋予辅助继电器(M400~M415);
将数字速度信号的低8位(M400~M407)赋予BFM的16#;
使BFM#17的b2=1;
使BFM#17的b2由1→0,保持低8位数据;
将数字速度信号的高4位赋予BFM的16#;
使BFM#17的b1=1;
使BFM#17的b1由1→0,执行通道1的速度信号D/A转换。
3) 通道2
将保存第二个数字速度信号的D988赋予辅助继电器(M300~M315);
将数字速度信号的低8位(M300~M307)赋予BFM的16#;
使BFM#17的b2=1;
使BFM#17的b2由1→0,保持低8位数据;
将数字速度信号的高4位赋予BFM的16#;
使BFM#17的b0=1;
使BFM#17的b0由1→0,执行通道2的速度信号D/A转换。
4) 程序中的K0为该数模转换模块的位置地址,在本控制系统中只用了一块模块,因此为K0,假如由于工艺要求控制系统还要再增加一块模块,则新增模块在编程时只要将K0改为K1即可。
(5)变频器主要参数的设置
根据控制要求,设置变频器的运行模式为外部运行模式,运行频率为外部运行频率设定方式,Pr.79=2;模拟频率输入电压信号为0~5V,所以,Pr.73=0;其余参数根据电机功率、额定电压、负载等情况进行设定。
3.2 注意事项
(1) FX2N-2DA采用电压输出时,应将IOUT与COM短路;
(2) 速度控制信号应选用屏蔽线,配线安装时应与动力线分开。
4、结束语
上述控制在实际使用过程中运行良好,很好的将PLC易于编程与变频器结合起来,当然不同的可编程序控制器的编程和硬件配置方法也不同,比如罗克韦尔PLC在增加D/A模块时,只要在编程环境下的硬件配置中添加该模块即可。充分利用PLC模拟量输出功能可以控制变频器从而控制设备的速度,满足生产的需要。
一、前言
当前,可编程控制器(PLC)作为一种成熟稳定的控制器,以卓越的稳定性、可靠性、抗干扰性和编程简单、容易掌握等特点在工业控制领域得到了越来越广泛的应用。在控制系统中,PLC作为主控设备,与控制对象中的各种输入信号(如:按钮、接近开关、编码器等检测信号)和输出设备(如继电器线圈、电磁换向阀等执行元件)相关联,随着控制系统的复杂程度和控制设备增多,PLC需要的输入输出点数也大量增加,这就有必要通过采用各种方法对I/O点进行优化,来减少系统占用I/O点数使用数量,提高I/O的利用率,降低硬件使用成本,下面以西门子PLC为例从软件和硬件两个方面进行探讨。
二、软件方法
1. 单按钮控制启动/停止
通常情况下,PLC控制的外部设备至少要有一个启动和一个停止按钮作为输入信号来控制程序的运行和停止,因此至少需要两个输入点,在点数紧张的情况下可采用单按钮控制进行优化,将节省下的点留作扩展功能。
图1为PLC的外部接线,SBl接输入I0.0,Q0.0接继电器输出,通常情况下,继电器应反向并联一个二极管。
图1
图2中,输入信号I0.0次短暂闭合,在正向脉冲指令下,辅助继电器M0.0输出一个周期的脉冲,则使网络3接通,输出Q0.0并实现自锁,输入信号I0.1第二次闭合,则网络2接通,使辅助继电器M0.1接通,常闭点M0.1打开,使网络3断开,输出Q0.0停止输出。
图2
除了上述的方法外还可以采用计数器,R/S指令,寄存器等方法实现。图3为采用R/S指令方式的方法。
图3
0、前言
可编程控制器(PLC)由于其运算速度高、指令丰富、功能强大、可靠性高、抗干扰性强而广泛应用于各种工业控制部分,在智能现场控制系统中,选用PLC作为控制器是十分有效的。本文以汽车传动轴防尘罩的检测为背景,着重讨论一种基于PLC控制的模拟汽车传动轴防尘罩实际运行环境的高低温试验箱控制系统的研制。
汽车传动轴防尘罩的作用是防止灰尘、杂质等进入前轮传动轴的连接处,同时也防止高温润滑油从中溢出。根据有关规定,本系统要求防尘罩在2500转/分下保持其的断裂延展特性,在-60~150℃下,能通过1~6千万次循环试验。在此情况下,我们受委托对汽车传动轴防尘罩高低温试验箱进行改造,以工控机为人机接口,采用PLC程序控制系统。
1、系统功能分析
传动轴防尘罩温度试验的基本要求是:在规定的温度下,以一定的转速运行一定的时间。交替设定温度、转速及时间(多为4组)循环一定次数构成一个测试阶段。测试过程多可设4个阶段,每个测试阶段的循环次数由测试员现场设定。实验中主要控制量有试验箱内温度(-60~150℃)、传动轴转速(0~1500rpm)、固定角及滑动角角度、测试时间(1~60000分)及阶段循环次数。测试过程要求调整固定角及滑动角的角度、启动温度控制系统使温度逐步达到设定值、使传动轴在设定的转速下运行规定的时间。现场设定不同的条件交替测试,循环一定周期。
根据测试要求,系统应具有手动,自动操作功能。手动操作时,操作人员可以直接控制电机、压缩机、加热器等设备的启停,进行设备维修,调试和试验等;自动操作时,测试装置自动完成整个测试过程。另外,控制系统还应具有完善的保护功能以保护人员及设备安全。任何时候都可以强行停止测试。若测试过程因故障原因终止,需要记录故障原因及测试进展状况。
2、控制系统的设计与实现
2.1 控制系统硬件结构设计
本系统人机界面部分采用台湾研华公司生产的奔腾机,软件部分采用Delphi编程,在系统中协调控制,打印输出,过程值显示,控制核心部件为OMROM的可编程控制器,它负责各控制系统所需要的各种逻辑控制和运算。被控对象有变频调速系统和温度系统。变频调速由日本安川公司生产的变频器驱动传动轴电机,使传动轴保持一定的转速。温度控制系统是一个典型的闭环控制系统,温度测量元件为铂电阻,由PLC控制电加热器及压缩机,实现加热或制冷。加热系统由三个电加热管组成,制冷系统由两级压缩机组成,其通断由PLC控制。
为实现检测控制要求,本系统采用日本立石(OMRON)公司CPM2A-40CDR-A的PLC作为主控单元。其输入点数为24点,输出点数为16点。该PLC具有体积小,重量轻,运行可靠,保护方便等特点。系统除了基本的开关量的输入/输出外,还配有模拟量的输入/输出扩展单元。模拟量输入单元用于接收Pt100热电阻温度信号,模拟量输出单元控制变频器输出频率,实时检测全部模拟信号,进行工程量转换,并与设定的上下值比较,开关量单元用于控制电机的启停,故障的报警等。 PLC的I/O分配和功能如图1所示。
图1 I/0分配与功能图
2.2 变频器控制系统
本系统的传动轴转速由变频器控制。控制部分主要由PLC、变频器、光电接近开关组成。传动轴旋转部分采用日本SANKEN公司IF-7.5K变频器驱动变频电机。采用转速闭环矢量控制,调速范围0~2500r/min,调速精度<0.02%。PLC通过模拟量输出单元将0~6000的数字量信号转换成4~20mA电流信号给变频器作为频率输出设定。传动轴实际转速反馈信号由PG光电接近开关检测输出,其输出脉冲经PLC计算作为电机的速度负反馈信号。
根据生产工艺对系统运行时稳态精度及跟随能力的要求,变频器内部的PID调节器设定为比例积分调节方式,由PLC的速度给定值与由脉冲编码器检测的现场速度反馈值比较后,得到速度偏差,经比例积分控制器处理后,输出的二次电流信号作为频率输出,送矢量控制系统,控制电机运行。恒功率的分界点以及它们的频率范围内的P.I值,由现场负荷调试确定,已达到佳运行效果。
因为转角电机的频繁快速启停,制动时经常会产生很高的泵升电压,因所选变频器为交-直-交电压源时,泵开电压不能回馈电网,故采用制动单元并配以电阻加以吸收。当变频器直流电路升高到一定值(660VDC)时,制动单元中的IGBT管被触发导通,接通制动电阻回路,将转角电机的回馈电能消耗在制动电阻上,以满足快速停止的要求。
2.3 温度控制系统
试验箱内的温度调节范围为-60℃~150℃,具体值由操作员现场设定。系统加热时采用三个晶闸管控制的电加热管,合上主回路的操作开关,整个加热装置开始运行,未达到设定温度时,固态继电器SSR1吸合,1号加管加热,系统逐级开启2号,3号加热管。达到设定温度时,进入保温阶段,采用控制3号,2号加热器的输出通断来调功调温。使用控制箱风机来保证温度均匀变化。如果箱内温度达到高温界限,系统将会报警。
单级蒸汽压缩制冷所能达到的蒸发主要取决于冷凝温度及压力比,对于氟利昂制冷剂,一般压力不超过10,这样采用单级蒸汽压缩制冷循环,一般只能制取-20~-40℃的低温因此采用单级蒸汽压缩制冷循环将无法满足本系统制取-60℃低温的要求,在此情况下,决定采用两台低温压缩机组成的复叠式制冷系统,两级复叠制冷系统将级蒸发器与第二级冷凝器复叠在一起,使第二级低温制冷剂在-35℃左右冷凝,在-80℃左右蒸发,以获得系统所需要的低温。
图2 温度控制系统电路图
3、PLC控制系统的软件设计
为了方便调试和编程,整个软件系统采用模块化编程,主要由手动运行模块,自动运行模块和故障诊断和报警模块。在软件编制时,采用了一些抗干扰措施,增强了整个系统的抗干扰能力,在计算机上可以实现实时操作,控制并观察现场各设备的运行情况。
当系统处于手动运行时,PLC接收各设备状态,由此判断各设备的运行状态,可单独运转变频电机、加热器、制冷系统的压缩机。便于系统的调试和维修。
系统自动运行时,只须按照计算机屏幕提示,设置操作参数,,试验即完全自动进行下去,并在计算机屏幕上实时显示各设备参数。试验过程中或试验结束后,均可按照提示选择打印方式打印。以下重点介绍温度控制子程序。
由于系统采用三套晶闸管控制的电加热器。常用的控制方式有两种:一种是分段开关控制,根据温度的高低,逐级开启或关闭加热器。这种方法温度偏差大,精度较低。另一种是PWM脉宽调制,在PLC中实现PWM程序比较复杂。回路中的电加热器为满足温度恒定的需要,经常切换工作状态,而常规的电磁继电器开关触电易磨损,寿命短。所以对种方法进行改进。
由于系统是二阶系统,在系统温度下降时,增加加热管,温度由于惯性的原因,温度继续下降一段时间后再上升,同样减少加热管,温度会上升一段时间后再下降。我们将前后两次测量值进行比较,得到温度偏差e,系统根据e来控制加热器的状态转换。当e较大时,此时通过逐级打开加热器来调整温度。
启停切换顺序为:启动顺序:1# 2# 3#;停止顺序:3# 2# 1#;温度的变化值e: e=Ti-Ti-1。其中Ti ,Ti-1分别是本次温度采样值与前次温度采样值,并记试验箱温度允许上限为HSP,允许下线为LSP。PV为温度测量值。考虑到前后两个采样周期的变化温度e变化不大。当当前温度值PV+前一个周期变化温度值e﹥温度设定上限HSP时,就减少加热管。反之,当PV+e﹤LSP时,就增加电加热管。程序框图如图3所示。
图3 温度控制流程图
电气系统已设计了各种保护,并直接作用至断电,其中包括:缺相保护、过载保护、旁路保护。 其中变频器具有短路、过载等保护功能,当变频器所驱动的电机发生短路、过载等故障时,变频器将自动切断一次供电回路,进入保护状态并输出报警信号,系统把各故障点相应的接触器、短路器等元件的辅助触电接到PLC,PLC扫描输入这些触电的状态,并通过PLC程序将这些状态存放在数据存储区,再结合控制程序和设备预置状态进行逻辑分析,判断设备或元件是否出了问题。
4、结束语
可编程控制器(PLC)控制的汽车传动轴防尘罩高低温试验箱可以控制传动轴转动速度、调整其运行环境温度、实时监测试验箱内各种变量状态、灵活处理数据的通信,并将数据实时显示在计算机上,而且可以将所得的数据进行存储打印输出,以便后查。大大提高了系统的效率。