全国服务热线 15221406036

西门子6ES7221-1BH22-0XA8支持验货

更新时间:2024-05-08 07:10:00
价格:请来电询价
联系电话:
联系手机: 15221406036
联系人:聂航
让卖家联系我
详细介绍

西门子6ES7221-1BH22-0XA8支持验货

1 引言
与其它工业控制系统相比,PLC控制系统具有可靠性高、抗干扰能力强等突出优点,因而广泛应用于工业控制领域。对于那些不必采用上位机监控+PLC现场控制的简易控制系统,操作面板的完善与否直接影响到整个系统的智能化程度高低。对小型控制系统而言,在满足功能的前提下,高性价比一直是设计人员追求的目标,若采用触摸屏(如SIEMENS的TP270)+组态软件(如PROTOOL)的方式组成人机界面,势必使整个系统的性价比大为降低,因此,提出基于PLC的矩阵式键盘设计方案具有较大的实际意义。

2 矩阵式键盘工作原理
矩阵式键盘是相对于独立式键盘而言的,也叫行列式键盘,是当键数较多时为节省I/O点而采取的一种结构。在微机系统中,矩阵式键盘的构成方式如图1所示。

图1 矩阵式键盘结构图


首先,判断整个键盘上有无键按下。方法是:将列全输出为0,然后读入行的状态,如果行读入的状态全为1,则无键按下,不全为1则有键按下。
其次,若有键按下则逐列扫描。方法是:依次将列线送低电平0,检查对应行线的状态;若行线全为1,则按键不在此列;若不全为1,则按键必在此列,且是与0电平行线相交的那个键。后,确定键值,并进入键处理程序。

3 矩阵式键盘硬件设计
在PLC系统中设计矩阵式键盘不仅要用到输入口,而且也要用到输出口,因此,了解PLC I/O口内部电路的结构以及工作原理是十分重要的。下面以S7-200的DC输入、输出模块为例,简要说明其工作原理。
3.1 输入模块
如图2所示,为PLC的DC输入模块,其中,K1-输入开关;M-公共端;I0.0-输入点;R1、R2的典型值为5.6K、1K。

图2 直流输入模块电路图


工作原理:若输入开关K1闭合,则输入信号经RC滤波和光电隔离后,转换为PLC的CPU所需的电平(一般为5V),再经过输入选择器与CPU的总线相连,从而将外部输入开关的“ON”状态输入到PLC内部,此时输入指示灯亮,且与该输入点对应的输入映像寄存器为“1”。若输入开关断开,则信号没有形成通路,此时输入指示灯不亮,表示为“OFF”状态。
3.2 输出模块
如图3所示,为PLC的DC输出模块,其中,L+接DC24V;Q0.0-输出点。

图3 直流输出模块电路图


工作原理:若用户程序将输出置为“ON”状态,则在刷新输出阶段CPU将“ON”信号送给输出锁存器,再经过光电耦合送给场效应管,使之饱和导通,此时输出指示灯亮,且通过场效应管将DC24V和负载连通,从而使得负载获得工作电流。反之,若用户程序将输出置为“OFF”状态,则输出指示灯不亮,情况与上述相反。

3.3 键盘的硬件设计
由以上分析可知:PLC的I/O口内部电路与一般的计算机系统(如单片机系统)有较大的不同,这就决定了在PLC系统中设计矩阵式键盘也有其特殊性。首先,由于输入模块中有RC滤波电路,其滤波延迟时间可以通过编程软件设置,即其本身存在硬件消抖动的功能,因此不再需要软件延时消抖动;其次,由于用到了PLC的输出口,它本身可以输出对M端有DC24V的电压,因此不再需要外接电源;后,由于PLC的输入口有6K左右的输入电阻,因此可以将DC24V的电压直接加上,若为了延长I/O口的使用寿命,一般按照输入模块的技术指标来配置限流电阻,经查阅输入电流的典型值为4mA,一般取R1=R2=R3=0.5K即可。如图4所示为3行3列矩阵式键盘的结构图。

图4 3×3键盘结构图


4 矩阵式键盘软件设计
4.1 PLC的扫描工作方式
当PLC处于“RUN”工作模式下时,除上电初始化外,其它程序都采取周而复始的循环扫描方式,称之为“PLC的扫描工作方式”,其执行流程如图5所示:

图5 PLC的扫描工作流程


在设计键盘时可暂不考虑通信和自诊断,则在一个扫描周期内剩下以下三个主要阶段:
(1) 输入采样阶段,CPU将所有物理输入点的状态存入对应的过程映像寄存器中,到下次输入采样前,过程映像寄存器的内容均保持不变;
(2) 程序执行阶段,CPU按照从左到右、从上到下的顺序执行程序,将运算结果写到输出映像寄存器或数据存储区内;
(3) 输出刷新阶段,在程序执行完后,CPU将过程输出映像寄存器的状态几乎同时的更新到物理输出点。
4.2 键盘的软件设计
矩阵式键盘的软件设计相对较为复杂,但无非是实现微机系统中所描述的键盘扫描程序的四个功能:
(1) 判断有无键按下;
(2) 去机械抖动;
(3) 求按下的键号;
(4) 键闭合一次仅进行一次键功能操作。
4.3 键盘设定及程序设计
再结合微机系统中矩阵键盘的原理,设计3×3矩阵式键盘,特做如下设定:
(1) 设定0~8号键分别与M0.0~M1.0对应,键按下,对应的位存储点为“1”,键松开则为“0”;
(2) 设定I0.0、I0.1、I0.2对应键盘的第0列、第1列、第2列,Q0.0、Q0.1、Q0.2对应键盘的第0行、第1行、第2行,M1.1为“有键按下”标志位;
(3) 按图4所示的方式构成3行3列矩阵式键盘,流程图如图6。

图6 键盘程序流程图

为增强程序的可读性,利用STEP7-Micro/WIN V4.0编程软件,用符号地址替代地址,编制3×3键盘的STL程序如下所示。
Network 1 判断有无键按下
LDN 有键按下
S 第0行, 3 //全行扫描
LD 第0列
O 第1列
O 第2列 //全列读入
AN 有键按下
S 有键按下, 1 //有键按下,置标志位
JMP 0
LDN 有键按下
MOVW 0, MW0 //无键按下,清零跳出
JMP 9
Network 2 散转程序
LD 有键按下
A 第0行
JMP 10 //跳至第0行
LD 有键按下
A 第1行
JMP 11 //跳至第1行
LD 有键按下
A 第2行
JMP 12 //跳至第2行
Network 3 逐行扫描
LBL 0 //第0行处理
LD 有键按下
RI 第0行, 3
SI 第0行, 1 //立即置位Q0.0
JMP 9
LBL 10
LD 第0列
= KEY_0 //0键
JMP 9
LD 第1列
= KEY_1 //1键
JMP 9
LD 第2列
= KEY_2 //2键
JMP 9
LBL 1 //第1行处理
LD 有键按下
RI 第0行, 3
SI 第1行, 1 //立即置位Q0.1
JMP 9
LBL 11
LD 第0列
= KEY_3 //3键
JMP 9
LD 第1列
= KEY_4 //4键
JMP 9
LD 第2列
= KEY_5 //5键
JMP 9
LBL 2 //第2行处理
LD 有键按下
RI 第0行, 3
SI 第2行, 1 //立即置位Q0.2
JMP 9
LBL 12
LD 第0列
= KEY_6 //6键
JMP 9
LD 第1列
= KEY_7 //7键
JMP 9
LD 第2列
= KEY_8 //8键
JMP 9
LD 有键按下
R 有键按下, 1
//无键按下,清标志位
Network 4 软件延时
LBL 9
LD 有键按下 //有键按下才延时
FOR VW0, 1, 500
NOP 0
NEXT
4.4 程序的说明
(1) 程序采用了立即置位、复位指令SI和RI,是为了更及时的置位复位输出点,使程序的执行不受扫描周期的影响,也可用字节立即写指令MOV_BIW来实现,但应该考虑对其它未用点的影响。
(2) 程序的后采用了软件延时,是为了解决程序指令执行时间与输入输出滞后时间的不匹配。利用编程软件STEP7-Micro/WIN V4.0中的System Block下的bbbbb Filters选项可以设置输入滤波时间,默认为6.4ms,减少滤波时间可以相应的减少软件延时次数,但若滤波时间太小又达不到消抖动的目的。
(3) 程序中没有考虑多键同时按下的问题,在现有的程序中,若不同行有多个键按下,均以先按下的那个键为准进行响应,但若同一行上有多个键按下,则又分要几种情况,因此在应用时,应加强对按键的限制条件,避免由于误操作而造成生产设备的损坏。
(4) 程序中对每个按钮的响应均是按下该键,则对应的存储位为“1”,放开该键,则为“0”,没有其它较为智能的功能。若键盘中有“加速”、“减速”等类似键时,往往希望有连续加减的功能,即按下“加速”一定时间后(如500ms),按照每规定时间(如100ms)增加一个单位的速度值,此时可以利用两个定时器实现,其STL程序如下。
LD 加速
TON T37, 5
LD 加速
EU
= 加速上升沿
LD T37
AN 每100MS通电一次
TON T38, 1
LD T38
= 每100MS通电一次
LD 每100MS通电一次
O 加速上升沿
EU
+I 1, 速度存储值

5 结束语
本文提出了在PLC系统中设计矩阵式键盘的一般方法并给出了3×3键盘的硬件连线图和STL程序。在键数较多时,矩阵式键盘可以大大节省PLC的I/O点数,但程序设计的复杂度也随之增加,因此使用时应在系统的硬件成本和实时性之间加以均衡考虑。此外,本文的设计思路具有通用性,只需稍加变动,就可移植到其它品牌的PLC中。文中的STL程序均已通过S7-200的编程软件STEP7-Micro/WIN V4.0在CPU226 DC/DC/DC上调试通过,说明了本文设计方法的可行性

1 客车整车喷烤漆房系统简介
客车整车喷烤漆房设备由实体,送排风系统,控制系统,净化系统,照明系统,安全消防系统,电动升降平台,进出车辆大门,加热系统等组成。实体采用钢结构框架承插上海宝钢EPS彩钢板制作,彩钢板厚度δ=0.75mm,墙板厚度不小于75mm,具有保温性能好,整体密封性能好,承载能力大的特点。
进气净化采用不少于两级的织物过滤,过滤精度大于10μm,室内设压力传感器1个,采用美国进口产品,电路芯片采用菲利浦产品。燃油采用集中供油方式。燃烧器性能稳定,工作安全可靠。电路连接件安全,牢固,可靠。在较冷季节进行喷漆作业时,室温应大于18℃。换热器采用不锈钢制作,具有耐热性和良好的散热效能(大于75%)送,排风风机应加热系统连锁,当送,排风系统位启动时,加热装置启动开关无效;当风机发生故障时,系统应能自动关闭加热装置。
(1) 喷漆的工作原理
外部空气经初级过滤后由风机送至室顶,在经过顶部过滤网二次过滤净化后,进入房内,房内空气采用全降式,以大于0.35m/s的速度向下流动,使喷漆后的漆雾微粒不能在空气中停留,而直接进入底层出口过滤装置,从而滤去喷漆过程中产生的有害气体,经处理达标后的废气直接从排气口排除至室外。保证室内空气清新,从而达到安全卫生的工作环境。(较冷季节可以对送入的空气进行加热,使送入的空气在30min内温度升至18℃)
(2) 烤漆的工作原理
通过风机将冷空气经初级过滤网过滤后,与热能转换器产生的热量送入烤漆房顶部,在经过滤网二次过滤净化,热空气以大于0.15m/s的速度进入烤漆房内,从底部排出,经过风门的内循环作用,除吸进少量新鲜空气外,部分热空气又被继续加热利用,送入烤房内部,使烤房内温度逐渐升高,当温度打到设定温度时,燃烧器自动停机,当温度下降到设定的温度以下4-5℃度时,风机和燃烧自动机,使烤房内温度保持相对稳定。当烤漆时间达到设定值时,烤房自动关机,烤漆过程结束

2 烤漆房的控制系统控制要求
(1) 二条烤漆房配置二套控制柜和一个工控机监控系统。该套系统必须封闭在操作室内。
(2) 每条生产线电控系统均采用PLC做控制中心,全线实行联锁控制,即:循环,排风系统不能正常工作时,自动关闭加热系统,以及工作状态选择等功能。常规操作和选择在控制柜和现场操作台完成。
(3) 控制系统具备延时功能,即:先行启动循环,排风系统后,延时启动加热系统,关闭时相反。
(4) 各主控制回路均设有过载,短路,失压等保护系统,确保系统安全运行。并具有安全保护功能,当燃油加热系统出现故障时,自动关闭加热系统及全线设备。
(5) 室内温度采用数字显示,6套热电偶控制温度,通过数显控制仪表调节燃烧工作状态,达到自动控温。
(6) PLC及工控机主要功能。设备各单元的启动,停止,运行,故障及工作选择状态,均由PLC采集,按照工艺通过输出单元控制并作声光报警。工控机通过PLC接口进行数据传送完成工艺流程动态显示各设备的运行或故障监控,PLC程序编制,参数设备及报表打印功能。脱开工控机系统,电气控制同样通过PLC完成各种流程的控制,并在柜体面板上采用组合信号灯观察各设备的工作状态。
(7) 电器控制柜采用组合式及密封型结构,柜内设立排风及照明装置。
(8) 现场导线的敷设采用桥梁,电线管和绕管联合布置,防暴场所均选用防暴电路,动力导线选用VV系统四芯电缆,控制线选用KVVR及KVVRP屏蔽电缆。动力线路和控制线路敷设时用隔板分开。
(9) 照明系统
室内照明灯箱采用嵌入式,选用荧光灯,其安装方式采用隔爆处理。
(10) 安全,消防系统
按照GB14444-93要求,设置相应数量的安全门。
(11) 电动升降操作台
在喷漆室内轨道两侧设置升降工作台,通过平台立柱上的防爆按钮控制操作台的升降。

3 烤漆房的控制系统总体结构及通讯参数配置
3.1 总体结构

电气系统设计主要是根招工艺及设备的要求,分析目前国内外涂装线电控系统现状,结合当今工业控制系统发展趋势,本着高质快速、柔性化和低成本的要求,采用以计算机为主的集散型控制系统(DCS)电气控制方案。利用计算机对生产过程进行集中监控、操作、管理和分散控制,有效地克服了以前油漆涂装线电控系统由于采用大量分散的仪表控制的缺陷。上位机工控机采用 1台 研华工控机IPC-610 PⅢ 1G 256M 40G硬盘,组态软件采用KINGVIEW6.02 ,PLC采用2台三菱FX2N-128+16EX,温控仪采用富士PXW9,实现对燃烧器大小火及上限停火。如图1所示。系统具有很高的可靠性和冗余性。脱开工控机系统,电气控制同样通过PLC完成各种流程的控制。

3.2 系统连接与FX2_485协议通讯参数配置
本协议支持与三菱FX2_485及其兼容的FX系列PLC之间以485方式进行通讯,可以采用串行通讯,使用计算机中的串行口。支持上位机通过组态软件与三菱的通讯模块232ADP,485BD,485ADP之间的通讯。PLC通讯参数可以通过编程器设置,将D8120设置为:E080,
具体表示的通讯参数如下:
*协议: bbbb 数据: 7 校验:无 停止:1 传输速率:9600
*硬件:RS-485 数目检查:YES 控制程序:bbbbat4
在D8121中设置地址,在组态王中定义的设备地址必须和此设置保值一致。 
注意:从PLC资料中得知,设置后必须关PLC电源,再重新给PLC上电,设置才能生效。


4 程序没计
4.1 两种运行方式
为了保证设备的运行可靠性及现场的控制和操作的方便性,每套分系统采用2种方式运行:
(1) 自动运行方式
只要接通电源,选择自动方式,系统就会先检测设备的预备运行的各项条件,如满足条件,按下运行按钮,设备就可自动运行。
(2) 手动运行方式
接通电源,选择手动方式,系统就会先检测设备的预备运行的各项条件,如满足条件,操作人员可以有选择地操作设备,这仅用于设备的检查和应急生产使用。部分(喷装室)加设各个联动系统的检测信号,作为联动必须满足的条件。
对于设备的报警情况,分设一级和二级的故障报警,并有不同的处理方法:一级故障:是一些比较简单的故障,它不会对设备造成损害和人身安全的影响。空气过滤器压差大等,程序只对设备做声音报警和故障位置的指示。二级故障:是能引起设备的损害和人身安全的故障,它会造成生产不能正常进行。如大型风机的故障、断路器跳闸、火灾和地震等故障,程序对设备作出立即停机和声音报警及位置指示。
4.2 PLC程序总体设计
(1) 整个程序的自动喷漆和手动喷漆部分,自动烤漆和手动烤漆部分,通过CJ指令来分段,如图2所示,大大减轻了编程的难度,使得喷漆,烤漆,自动,手动可分别编程,可以采用双线圈输出,解决了程序包容性问题,注意公共部分程序和分段程序的包容性,防止双线圈输出,否则出现不可预测的结果,通过CJ 指令可实现任意分段,比采用MC,MCR实现自动和手动更具灵活性,并可以采用双线圈输出。


(2) 手动程序及复位
为使系统调试方便,设有手动程序。手动方式是通过往制箱上的手动功能开关来进行的。每接通一个开关,执行一个相应的动作。当系统没有处于自动运行和手动运行状态时,按“总复位”按钮。可使系统完全复位。
4.3 上位机监控程序
在上位机上实现工艺流程图的实时监测、数据处理是通过可编程控制器操作站系统软件和组态软件来实现的。组态软件主要对系统的构成进行定义,定义过程点参数、趋势笔、趋势组、流程图、报表等,监控软件由各种监视画面和操作画面组成,主要包括总貌画面、流程图画面、趋势画圃、报表管理以及趋势打印、报表生成打印输出、操作调整等。
上位机主要工艺参数分组曲线显示,并存人上位磁盘中,工艺人员随时调用打印,做工艺质量分析。同时还可将每班设备启停时间、各工位启停传送时间进行记录存盘.供生产管理人员随时查询打印停工台时间和停工月报表。 上位机的操作分操作员级和工程师两级.正常生产时,由生产工人操作。
工艺流程画面如图3实现了对整个烤漆房的全面监控,界面形象生动,友好,具有较好的可靠性,在画面上 实现凤机旋转动画,燃烧机燃烧动画,当某设备发生故障,该设备将闪烁,并弹出实时报警画面;在手动状态,可以直接点击该设备,便可启停该设备,喷漆和烤漆时,通风的路径及颜色将发生变化。烤漆房温度除数字显示外,采用温度棒图显示。




图4系统参数,显示系统各设备的状态,可设定参数,如烤漆时间;图5历史报警画,显示所有报警发生的时间,报警恢复、报警应答,报警的优先级,报警组,如果在运行阶段,变量的数值或变化情况满足已定义的报警条件、从报警条件恢复正常状态、报警应答时均可以产生报警事件(报警发生、报警恢复、报警应答)。报警信息还可以用文件的形式进行历史记录或实时打印报警信息。用户可以自定义报警信息的显示格式、记录格式和打印格式。同时可以利用命令语言实现对报警事件的复杂控制和灵活处理。 


没有

联系方式

  • 地址:上海松江 上海市松江区石湖荡镇塔汇路755弄29号1幢一层A区213室
  • 邮编:201600
  • 联系电话:未提供
  • 经理:聂航
  • 手机:15221406036
  • 微信:15221406036
  • QQ:3064686604
  • Email:3064686604@qq.com