西门子6ES7235-0KD22-0XA8详细使用
西门子6ES7235-0KD22-0XA8详细使用
目前,市场上流行的注塑机专用机械手就控制系统而言都是使用专用的微处理机加接口组成的小控制系统。在机械构造方面,当定位精度要求不高时采用时规皮带传动,行走部分配置滑线导轨,由变频调速器调速控制。本文提出一种基于PLC控制的注塑机专用机械手,充分利用PLC灵活控制的特点,行走部分配置滑线导轨,采用斜齿轮齿条传动和变频调速控制;是一种高性价比的机电一体化设备。文章分别从机械构造和电气控制两个层面对该机作了较为完整的论述。
1 引言
在塑胶制品中,以制品的加工方法不同来分类,主要可以分为四大类。一为注塑成型产品;二为吹塑成型产品;三为挤出成型产品;四为压延成型产品。其中应用面广、品种多、精密度高的,当数注塑成品产品类,小到日常生活用品中的锅瓢碗盏、儿童玩具,大到精密工业设备上的零部件,随着各种高分子新材料的不断涌现,许多金属零部件亦有不断被这些新材料逐步取代的趋势。为配合注塑成型产品自动化生产要求,为保证制品的高品质高效率,必须尽量减少人工的干预,基于上述思想,许多注塑机生产厂家将注塑机专用机械手的装置列入了客户辅助选用件的范围。
然而,对于原有注射机而言,绝大多数都没有此项装置,因此,开发适合注塑机使用的专用辅助机械手,就成了提升厂家产品的竞争力的一种重要手段和必然选择。
2 行业状况
各种类型机械手是自动化生产中必不可少的重要设备。尤其是在危险场合,在严重威胁人们安全和健康的环境下,采用机械手代替人,具有十分重要的意义。
珠江三角洲地区塑胶工业是十分发达的,在国内居地位,在国际上珠三角也有世界工厂之称。目前,该行业使用的注射机专用机械手以台湾生产的居多,如台湾劲力公司生产的劲力牌机械手、台湾威得客国际股份有限公司生产的“威得客”W255系列注射机专用机械手,等等。
剖析此类机械手的结构,其电气控制系统一般均采用微型计算机小系统或单片机系统,机械手驱动部分采用气动驱动,变频调速驱动和伺服驱动。在机械构造方面采用滑线导轨结构配时规皮带传动,或用滚珠齿轮齿条结构配滑线导轨。总体设计思想,都是尽量采用成熟的控制技术和机械零件与机构搭配而成。
3 基于PLC控制的注塑机专用机械手
上述注塑机专用机械手, 就机械手制造厂家而言, 由于是专用辅助设备因而售价较高, 尤其用于对原有注塑机的设备改造上, 经济上似乎“得不偿失”之嫌。所谓“高性能价格比”的注塑机专用机械手就成了所有注塑制品生产厂家利用原有注塑机设备提升产品质量的重要选择和大需求。
3.1 以PLC为核心的控制系统
PLC是一种以微处理器为核心, 并综合了计算机技术,自动控制技术和通信技术而发展起来的一种新型工业自动控制装置。它的大特点就是体积小, 功能强, 响应速度快,可靠性高。控制过程均通过以梯形图的方式编程。随时可依生产工艺的不同要求而随机修改,还具有可扩展性。现在由于PLC均由世界上有名的电气控制设备制造商化研究开发和批量生产, 故由于生产成本低而导致价格便宜。随着全球经济一体化进程的加快, 市场竞争导致其价格有进一步下调的空间, 为各行业上广泛采用此种控制系统提供了有利条件。其控制系统原理图如图1所示。
图1 PLC控制系统框图
图中人机界面亦采用技术上及工艺上均已十分熟悉的5.7"单色触摸屏, 采用手持式结构, 通过对话式操作界面,全中文模式,简单易学。内建程序可以随心所欲的搭配使用, 可自动监测故障并纪录。可随时修改三个坐标轴的运动参数及横行轴变频调速器的各项参数,以满足产品工艺要求。PLC通过读取注塑机的开合模信号和顶针信号,通过程序运行从而保证机械手与注塑机工作安全协调。
3.2 机电一体化机械传动模式
在当今技术更新愈来愈快的时代,谁跟上技术发展的脚步,谁就有可能获得市场。目前,市场上流行的注塑机专用机械手,无一不是沿用上述思路来设计的。本文将上述思想引伸为一种设计模式:积木式结构。即将系统中相对独立的部件,在满足系统工艺要求的前提下,采用高性能价格比的机构予以配置。针对本系统的结构,横行轴采用变频器马达配减速机构驱动;上下轴及引拔轴使用气缸驱动。在横行、引拔、上下行走机构上均使用进口的高刚型线性滑轨。上下行轴及引拔轴装配支座均使用市售高刚型的铝合金型材,横行轴采用斜齿轮齿条传动。,高性价比的机械配置加高性价比的控制系统,由此催生了极具市场竞争力的注塑机专用机械手。
根据上述设计思想,以OMRON公司的CPM2AE为例,该型号是专为中国客户推出的PLC,具有极高的性价比,笔者以此为核心,配上触摸屏和LG变频器,再辅以上述机械传动部件,即构成了注塑机专用机械手的硬件部分,而软件编程则以应用工程师十分熟悉的梯行图语言来编写,相信也并非难事。该注塑机专用机械手已应用于生产。造价较市场上同类型机低近2万元。
一、 实验目的
熟练使用置位和复位等各条基本指令,通过对工程实例的模拟,熟练地掌握PLC的编程和程序调试。
二、液体混合装置控制的模拟实验面板图:图下图1所示
液体混合装置控制面板
上图下框中的V1、V2、V3、M分别接主机的输出点Q0.0、Q0.1、Q0.2、Q0.3;起、停按钮SB1、SB2分别接主机的输入点I0.0、I0.1;液面传感器SL1、SL2、SL3分别接主机的输入点I0.2、I0.3、I0.4。上图中,液面传感器利用钮子开关来模拟,启动、停止用动合按钮来实现,液体A阀门、液体B阀门、混合液阀门的打开与关闭以及搅动电机的运行与停转用发光二极管的点亮与熄灭来模拟。
三、控制要求
由实验面板图可知:本装置为两种液体混合装置,SL1、SL2、SL3为液面传感器,液体A、B阀门与混合液阀门由电磁阀YV1、YV2、YV3控制,M为搅动电机,控制要求如下:
初始状态:装置投入运行时,液体A、B阀门关闭,混合液阀门打开20秒将容器放空后关闭。
启动操作:按下启动按钮SB1,装置就开始按下列约定的规律操作:
液体A阀门打开,液体A流入容器。当液面到达SL2时,SL2接通,关闭液体A阀门,打开液体B阀门。液面到达SL1时,关闭液体B阀门,搅动电机开始搅动。搅动电机工作6秒后停止搅动,混合液体阀门打开,开始放出混合液体。当液面下降到SL3时,SL3由接通变为断开,再过2秒后,容器放空,混合液阀门关闭,开始下一周期。
停止操作:按下停止按钮SB2后,在当前的混合液操作处理完毕后,才停止操作(停在初始状态上)。
四、编制梯形图并写出程序
参考程序 如上表所示
五、程序设计及工作过程分析
启动操作:按下启动按钮SB1,I0.0的动合触点闭合,M10.0产生启动脉冲,M10.0的动合触点闭合,使Q0.0保持接通,液体A电磁阀YV1打开,液体A流入容器。当液面上升到SL3时,虽然I0.4动合触点接通,但没有引起输出动作。当液面上升到SL2位置时,SL2接通,I0.3的动合触点接通,M10.3产生脉冲,M10.3的动合触点接通一个扫描周期,复位指令R Q0.0使Q0.0线圈断开,YV1电磁阀关闭,液体A停止流入;与此同时,M10.3的动合触点接通一个扫描周期,保持操作指令S Q0.1使Q0.1线圈接通,液体B电磁阀YV2打开,液体B流入。
当液面上升到SL1时,SL1接通,M10.2产生脉冲,M10.2动合触点闭合,使Q0.1线圈断开,YV2关闭,液体B停止注入,M10.2动合触点闭合,Q0.3线圈接通,搅匀电机工作,开始搅动。搅动电机工作时,Q0.3的动合触点闭合,启动定时器T37,过了6秒,T37动合触点闭合,Q0.3线圈断开,电机停止搅动。当搅匀电机由接通变为断开时,使M11.2产生一个扫描周期的脉冲,M11.2的动合触点闭合,Q0.2线圈接通,混合液电磁阀YV3打开,开始放混合液。
液面下降到SL3,液面传感器SL3由接通变为断开,使M11.0动合触点接通一个扫描周期,M20.1线圈接通,T1开始工作,2秒后混合液流完,T1动合触点闭合,Q0.2线圈断开,电磁阀YV3关闭。同时T1的动合触点闭合,Q0.0线圈接通,YV1打开,液体A流入,开始下一循环。
停止操作:按下停止按钮SB2,I0.1的动合触点接通,M10.1产生停止脉冲,使M20.0线圈复位断开,M20.0动合触点断开,在当前的混合操作处理完毕后,使Q0.0不能再接通,即停止操作。
参考梯形图如下所示:
液体混合装置梯型图
1.高速计数器概述
21点高速计数器C235~C255共用PLC的8个高速计数器输入端X0~X7,某一输入端同时只能供一个高速计数器使用。这21个计数器均为32位加/减计数器(见表3–7)。不同类型的高速计数器可以同时使用,但是它们的高速计数器输入不能冲突。
高速计数器的运行建立在中断的基础上,这意味着事件的触发与扫描时间无关。在对外部高速脉冲计数时,梯形图中高速计数器的线圈应一直通电,以表示与它有关的输入点已被使用,其他高速计数器的处理不能与它冲突。可用运行时一直为ON的M8000的常开触点来驱动高速计数器的线圈。
例如在图1中,当X14为ON时,选择了高速计数器C235,从表3–7可知,C235的计数输入端是X0,但是它并不在程序中出现,计数信号不是X14提供的。
表1给出了各高速计数器对应的输入端子的元件号,表中的U、D分别为加、减计数输入,A、B分别为A、B相输入,R为复位输入,S为置位输入。
2.一相高速计数器
C235~C240为一相无起动/复位输入端的高速计数器,C24l~C245为一相带起动/复位端的高速计数器,可用M8235~M8245来设置C235~C2415的计数方向,M为ON时为减计数,为OFF时为加计数。C235~C240只能用RST指令来复位。
图1中的C244是1相带起动/复位端的高速计数器,由表1可知,Xl和X6分别为复位输入端和起动输入端,它们的复位和起动与扫描工作方式无关,其作用是立即的和直接的。如果X12为ON,一旦X6变为ON,立即开始计数,计数输入端为X0。X6变为OFF,立即停止计数,C244的设定值由D0和D1指定。除了用Xl来立即复位外,也可以在梯形图中用复位指令复位。
3. 两相双向计数器
两相双向计数器(C246~C250)有一个加计数输入端和一个减计数输入端,例如C246的加、减计数输入端分别是X0和Xl,在计数器的线圈通电时,在X0的上升沿,计数器的当前值加1,在X1的上升沿,计数器的当前值减l。某些计数器还有复位和起动输入端。
4.A-B相型双计数输入高速计数器
C25l~C255为A–B相型双计数输入高速计数器,它们有两个计数输入端,某些计数器还有复位和起动输入端。
图2中的X12为ON时,C25l通过中断,对X0输入的A相信号和X1输入的B相信号的动作计数。X11为ON时C251被复位,当计数值大于等于设定值时,Y2的线圈通电,若计数值小于设定值,Y2的线圈断电。
A/B相输入不仅提供计数信号,根据它们的相对相位关系,还提供了计数的方向。利用旋转轴上安装的A/B相型编码器,在机械正转时自动进行加计数,反转时自动进行减计数。A相输入为ON时,若B相输入由OFF变为ON,为加计数(见图2b);A相为ON时,若B相由ON变为OFF,为减计数(见图2c)。通过M8251可监视C251的加/减计数状态,加计数时M8251为OFF,减计数时M8251为ON。
5.高速计数器的计数速度
一般的计数频率:单相和双向计数器高l0kHz,A/B相计数器高为5kHz。
高的总计数频率:FXlS和FXlN为60kHz,FX2N和FX2NC为20kHZ,计算总计数频率时A/B相计数器的频率应加倍。FX2N和FX2NC的X0和X1因为具有特殊的硬件,供单相或双相计数时(C235,C236或C246)高为60kHz,用C25l两相计数时高为30kHz。
应用指令SPD(速度检测,FUC56)具有高速计数器和输入中断的特性,X0~X5可能被SPD指令使用,SPD指令使用的输入点不能与高速计数器和中断使用的输入点冲突。在计算高速计数器总的计数频率时,应将SPD指令视为l相高速计数器