西门子6ES7235-0KD22-0XA8产品信息
西门子6ES7235-0KD22-0XA8产品信息
1 引言
随着控制技术的不断发展,触摸屏与可编程控制器在工业控制中的应用越来越广泛。触摸屏又称可编程终端( Prograirvnable Tennimal ),简称PT,它是新一代高科技图形化人机界面产品。它具有强大的显示功能和操作功能,既可以对生产现场、设备进行实时显示和监控,同时又可以在其屏上设置触摸开关,对设备进行操作。触摸屏与PLC连接起来组成的控制系统的具体应用是:触摸屏完成对设备的操作、显示、报警,PLC则根据生产工艺的要求,编制程序,直接对设备进行控制。触摸屏替代了原控制中的显示盘、操作盘,PLC替代原控制中的控制盘,这种方式摒弃了传统电气控制中的继电器、指示仪表、操作开关,变硬件设备为软件设备,具有占地少、控制精度高、功能强、可编程、智能化等诸多特点。当前在一些控制要求较高,参数变数多,硬件接线有变化的场所,触摸屏与PLC控制形式已占主导地位。那么触摸屏与PLC是如何通信和连接的,不同厂家的产品其通信连接的方法也不尽相同。下面以广泛应用的OMRON公司生产的触摸屏NT631/NT631 C与其公司的PLC的通信连接为主、对这方面的内容做介绍(以下对触摸屏简称PT、可编程控制器PLC在此也称上位机)。
1 NT631/NT631 C与PLC的通信方式
NT631/NT631 C与PLC之间有三种通信方式,即上位链接方式、NT链接(1 :1 )方式、NT链接(1 3V)方式。所谓上位链接就是以可编程终端PT发出命令信息给PLC,PLC返回响应信息,以这样会话式的顺序读出或写入PLC继电器、数据存储器及各种设定状态的信息。上位机以1 :1连接方式链接到>},上位机的字和位通过上位链接通讯方式读出并显示。这种方式可用干连接大多数类型的PLC。NT链接是一种用直接连接功能与PLC高速通信的方法。所谓NT链接1 :1就是指PLC与PT1对1连接。通过NT链接(1 :1)通信方式读出并显示上位机的字和位。这种通信方式的通信速度比上位链接方式快。IVT链接((1:N)方式是指一台PLC连接到多台PT。PLC的字和位通过NT链接((1:N)通信方式读出并显示,每台PT可以分别向PLC传送数据或从PLC接受数据,并且它们可以有独立的画面显示。这种方式提供了PLC与多台PT白勺快速通信。每一种通信方式都需要根据连接的PLC的运行条件进行设置。
NT631/NT631 C有两个通信端口:串口A和串口B。串口A仅用于RS-232C的通信类型,此端口可连接支持工具和条形码读入器。串口B有两端口:连接器和终端块。连接器端口仅用于RS-2320的通信类型,不能在此连接支持工具和条形码阅读器;终端块端口仅用于RS-422A1485的通信,且连接器和终端块端口不能同时使用。OMRON公司生产的可编程控制器PLc的类型很多、有C系列、CV系列、CVM1系列,每种机型所带的通信接口类型是不同的、有RS-2320口,也有RS-422A ,RS-485口。由于F'1,与PLC的接口形式不同,所以它们连接时就会出现不同的情况。
2 NT631/NT631 C与FLC的连接方法
2.1 FT的R5-232C端口和上位机的RS-232C端口的连接
方法如图1所示。
用一根RS-232电缆在RS-232C端口间直接连接。这是简单的连接方法。根据将要连接的上位机,可以使用带连接器的OMRON的电缆。
2.2 PT的RS-422A/485端口和上位机的RS-422A/485端口的连接
有四种方法:
(1)通过RS-422A电缆直接连接PT和上位机的RS-422A端口,使用这种方法时电缆长度可延长至500米。方法如图2所示。
(2)通过RS-485电缆直接连接PT和上位机的RS-485端口,使用这种方法时电缆长度可延长至500米。方法如图3所示。
(3)用1∶N链接方式连接多台PT的RS-422A的端口和上位机的RS-422A端口。这种方法适用RS-422A型NT链接(1∶N)方式。方法如图4所示。
(4)用1∶N链接方式连接多台PTRS-485的端口和上位机的RS-485端口。这种方法适用RS-485型NT链接(1∶N)方式。方法如图5所示。
2.3 PT的RS-422A/485端口和上位机的RS-232C端口的连接
有四种方法:
(1)PT的RS-422A端口和上位机的RS-232C端口通过RS-232C/RS-422A转换单元NT-AL001以(1∶1)连接方式连接。方法如图6所示。使用这种方法时,电缆长度可延长至500米。
(2)PT的RS-485端口和上位机的RS-232C端口通过RS-232C/RS-422A转换单元NT-AL001以(1∶1)连接方式连接。方法如图7所示。使用这种方法时,电缆长度可延长至500米。
(3)多台PT的RS-422A端口和上位机的RS-232C端口通过RS-232C/RS-422A转换单元NT-AL001以(1∶N)连接方式连接。方法如图8所示。这种连接方法与RS-422A型NT链接(1∶N)方式一起使用。
(4)多台PT的RS-485端口和上位机的RS-232C端口通过RS-232C/RS-422A转换单元NT-AL001以(1∶N)连接方式连接。方法如图9所示。这种连接方法与RS-485型NT链接(1∶N)方式一起使用。
3 结束语
从上述的连接可看出,RS-232端口在通讯中仅适用于距离短,连接方式单一,即具有RS232端口的PLC一般只能控制一台PT。当PT和PLC的连接距离变长,而且一台PLC控制多台PT时,这时就必须通过转换器单元将RS-232信号转换为RS-422/RS-485信号。转换器单元起着放大信号、变换电压(将5V信号电压转换为15V信号电压)的作用。RS-422A/RS-485端口适用于长距离传输,长至500米。在实际接线时,当PLC和PT采用1∶N连接时,必须将PT连线的终端接至PLC,而且不能有分支,否则将引起传输延迟和通信错误
1. PID控制
在工业控制中,PID控制(比例-积分-微分控制)得到了广泛的应用,这是因为PID控制具有以下优点:
1)不需要知道被控对象的数学模型。实际上大多数工业对象准确的数学模型是无法获得的,对于这一类系统,使用PID控制可以得到比较满意的效果。据日本统计,目前PID及变型PID 约占总控制回路数的90%左右。
2)PID控制器具有典型的结构,程序设计简单,参数调整方便。
3)有较强的灵活性和适应性,根据被控对象的具体情况,可以采用各种PID控制的变种和改进的控制方式,如 PI、PD、带死区的PID、积分分离式PID、变速积分PID等。随着智能控制技术的发展,PID控制与模糊控制、神经网络控制等现代控制方法相结合,可以实现PID控制器的参数自整定,使PID控制器具有经久不衰的生命力。
2. PLC实现PID控制的方法
如图6-35所示为采用PLC对模拟量实行PID控制的系统结构框图。用PLC对模拟量进行PID控制时,可以采用以下几种方法:
图6-35 用PLC实现模拟量PID控制的系统结构框图
1)使用PID过程控制模块。这种模块的PID控制程序是PLC生产厂家设计的,并存放在模块中,用户在使用时只需要设置一些参数,使用起来非常方便,一块模块可以控制几路甚至几十路闭环回路。但是这种模块的价格昂贵,一般在大型控制系统中使用。如三菱的A系列、Q系列PLC的PID控制模块。
2)使用PID功能指令。现在很多中小型 PLC都提供PID控制用的功能指令,如FX2N系列PLC的PID指令。它们实际上是用于PID控制的子程序,与A/D、D/A模块一起使用,可以得到类似于使用PID过程控制模块的效果,价格却便宜得多。
3)使用自编程序实现PID闭环控制。有的PLC没有有PID过程控制模块和 PID控制指令,有时虽然有PID控制指令,但用户希望采用变型PID控制算法。在这些情况下,都需要由用户自己编制PID控制程序。
3. FX2N的PID指令
PID指令的编号为FNC88,如图6-36所示源操作数[S1]、[S2]、[S3]和目标操作数[D]均为数据寄存器D,16位指令,占9个程序步。[S1]和[S2]分别用来存放给定值SV和当前测量到的反馈值PV,[S3]~[S3]+6用来存放控制参数的值,运算结果MV存放在[D]中。源操作数[S3]占用从[S3]开始的25个数据寄存器。
图6-36 PID指令
PID指令是用来调用PID运算程序,在PID运算开始之前,应使用MOV指令将参数(见表6-3)设定值预先写入对应的数据寄存器中。如果使用有断电保持功能的数据寄存器,不需要重复写入。如果目标操作数[D]有断电保持功能,应使用初始化脉冲M8002的常开触点将其复位。
表6-3 PID控制参数及设定
PID指令可以同时多次使用,但是用于运算的[S3]、[D]的数据寄存器元件号不能重复。
PID指令可以在定时中断、子程序、步进指令和转移指令内使用,但是应将[S3]+7清零(采用脉冲执行的MOV指令)之后才能使用。
控制参数的设定和 PID运算中的数据出现错误时,“运算错误”标志M8067为 ON,错误代码存放在D8067中。
PID指令采用增量式PID算法,控制算法中还综合使用了反馈量一阶惯性数字滤波、不完全微分和反馈量微分等措施,使该指令比普通的PID算法具有更好的控制效果。
PID控制是根据“动作方向”([S3]+1)的设定内容,进行正作用或反作用的PID运算。PID运算公式如下:
以上公式中:△MV是本次和上一次采样时PID输出量的差值,MVn是本次的PID输出量;EVn和 EVn-1分别是本次和上一次采样时的误差,SV为设定值;PVn是本次采样的反馈值,PVnf、PVnf-1和PVnf-2分别是本次、前一次和前两次滤波后的反馈值,L是惯性数字滤波的系数;Dn和Dn-l分别是本次和上一次采样时的微分部分;K p是比例增益,T S是采样周期,T I和T D分别是积分时间和微分时间,αD是不完全微分的滤波时间常数与微分时间TD的比值。
4.PID参数的整定
PID控制器有4个主要的参数K p、T I、T D和T S需整定,无论哪一个参数选择得不合适都会影响控制效果。在整定参数时应把握住PID参数与系统动态、静态性能之间的关系。
在P(比例)、I(积分)、D(微分)这三种控制作用中,比例部分与误差信号在时间上是一致的,只要误差一出现,比例部分就能及时地产生与误差成正比的调节作用,具有调节及时的特点。比例系数K p越大,比例调节作用越强,系统的稳态精度越高;但是对于大多数系统,K p过大会使系统的输出量振荡加剧,稳定性降低。
积分作用与当前误差的大小和误差的历史情况都有关系,只要误差不为零,控制器的输出就会因积分作用而不断变化,一直要到误差消失,系统处于稳定状态时,积分部分才不再变化。因此,积分部分可以消除稳态误差,提高控制精度,但是积分作用的动作缓慢,可能给系统的动态稳定性带来不良影响。积分时间常数T I增大时,积分作用减弱,系统的动态性能(稳定性)可能有所改善,但是消除稳态误差的速度减慢。
微分部分是根据误差变化的速度,提前给出较大的调节作用。微分部分反映了系统变化的趋势,它较比例调节更为及时,所以微分部分具有超前和预测的特点。微分时间常数T D增大时,超调量减小,动态性能得到改善,但是抑制高频干扰的能力下降。
选取采样周期T S时,应使它远远小于系统阶跃响应的纯滞后时间或上升时间。为使采样值能及时反映模拟量的变化,T S越小越好。但是T S太小会增加CPU的运算工作量,相邻两次采样的差值几乎没有什么变化,所以也不宜将T S取得过小。
- 西门子授权服务商6ES7235-0KD22-0XA8
- 西门子代理商6ES7235-0KD22-0XA8西门子授权代理
- SIEMENS西门子 模拟输出输入EM235 6ES7235-0KD22-0XA8
- 输入1输出模块6ES7235-OKD22-OXA8
- 西门子s7-2OO模拟量卡件6ES7235-OKD22-OXA8
- 西门子s7-2OO模拟量模块6ES7235-OKD22-OXA8
- 西门子s7-2OO信号模块6ES7235-OKD22-OXA8
- 西门子s7-2OO扩展模块6ES7235-OKD22-OXA8
- 西门子PLC模拟量卡件6ES7235-OKD22-OXA8
- 西门子PLC模拟量模块6ES7235-OKD22-OXA8