西门子6ES332-5HF00-0AB0
西门子6ES332-5HF00-0AB0
、引言
传统的军民用飞机的发动机起动程序控制系统普遍采用机电相结合的方式,由于采用机电式的定时机构去控制相关的继电器、接触器以实现发动机起动程序控制,不仅使控制系统的体积增大、重量加重、耗电多、可靠性差,而且采用固定接线的硬件设计使系统不具有通用性,更突出的问题是由于机械磨损还会使系统的控制精度逐渐降低。由于PLC把计算机的编程灵活、功能齐全、应用面广等优点与继电器系统的控制简单、使用方便、抗干扰能力强等优点结合起来,而其本身又具有体积小、重量轻、耗电省等优点,因此,用PLC取代机电式的定时机构来完成发动机的起动程序控制,将极大地改善发动机起动控制系统的性能。
2、发动机起动程序控制原理
发动机由静止状态转变到能自行发出功率的低转速状态叫发动机的起动。为了使发动机涡轮(转子)能由静止状态柔和地、无撞击地转动起来,定时机构必须对起动机的起动转矩进行分级调节,使起动机的转矩逐级增大,并适时地控制对发动机燃烧室进行喷油点火。某型飞机发动机的起动程序控制原理如图1所示。
图1 发动机的起动程序控制原理
定时机构的程序控制把起动机的工作过程划分为以下几个阶段:
阶段:即按下起动按钮后的1S~3.6S内,使起动机以复励状态且电枢串联起动降压电阻工作,起动机转矩被限制在很小的范围内,因此,起动机能柔和地通过
传动装置带动发动机涡轮旋转。
第二阶段:即按下起动按钮后的3.6S~9S内,短接起动降压电阻,起动机两端电压升高,起动机转矩迅速增大,随之涡轮转速迅速上升。
第三阶段:即按下起动按钮后的9S~15S内,起动电源车内的两组电瓶由并联转为串联,起动机两端的电压由28V升高到56V,起动机转矩急剧增大,从而使涡轮转速急剧上升。
第四阶段:即按下起动按钮后的15S~22S内,起动机并励线圈串联降压电阻使起动机的激磁磁通减小,反电势减小,电枢电流增大,转矩又一次增大,从而使涡轮进一步加速。
3、PLC控制系统
3.1 系统硬件设计及I/O地址的分配
图2 发动机起动程序电气控制线路图
在发动机起动机程序控制系统中PLC采用三菱FX2系列中的FX2N-48MR-001型,该系列PLC可靠性高,抗干扰能力强,适合于在军民用飞机上使用,且配置灵活,[1]。从图1 中可以看出:为了实现起动机的四个阶段控制,自按下起动按钮起,接触器KM1、KM2的吸合时间均为9S~21S,KM3为3.6S~22S,KM4为1S~3.6S,KM5为1S~15S,KM6为15S~22S,根据系统的控制要求,PLC控制系统需引入与停止按钮和起动按钮分别相对应的两个输入继电器、与四个接触器和两个继电器分别相对应的六个输出继电器、以及控制上述四个接触器和两个继电器分时段工作的四个通电延时时间继电器和两个断电延时时间继电器。发动机起动程序电气控制线路图和PLC的I/O地址编码表分别如图2、表1所示。
表1 I/O地址编码表
3.2 软件设计
图3 控制系统梯形图
软件设计采用使用广泛的PLC梯形图图形编程语言。梯形图与继电器控制系统的电路图很相似,直观易懂,很容易被熟悉电器控制的电气人员掌握,特别适用于开关量逻辑控制[2]。该控制系统梯形图如图3所示。
图3中:X0、X1为输入继电器;Y1、Y2、Y3、Y4、Y5、Y6为输出继电器;T1、T2、T3、T4为通电延时时间继电器;T5、T6为断电延时时间继电器;M0、M1、M2、M3、M4为中间继电器。
4、结束语
通过将可编程序控制器应用于发动机起动程序控制系统中,可以极大地改善控制系统的性能,不仅使系统的控制精度提高、抗干扰能力增强,而且使系统还具有体积小、重量轻、耗电省、通用性强等优点。
网络通信问题很多用户都碰到过,导致问题的原因很多。近碰到的一个profibus通信的问题,常见却不容易发现。我觉得很有必要给大家讲讲。以后项目中要引以为戒啊!
一个项目进行改造,在profibus网络的后面增加了几个站点,距离也非常近,符合profibus网络长度的限制,同时也符合网络的安装规范,接地也良好,施工完成后,从站出现不定期的掉站情况,故事将带您一起分析故障的原因。
网络比较复杂,划分了好几个网段,根据现场测试简单画出网络拓扑图,如图1所示。
为了便于分析,图1中的网络只是示意图,总共有三个网段,只有一个cpu,从站故障多发生于网段1中cpu右边的22个从站设备中。
由于profibus通信是电压差分信号,故障发生在哪一个网段只是结果并不能判断故障源。先使用amprolyzer (profibus报文测试软件,可以在西门子网站上下载)软件对整个网络进行测试,发现有报文错误。现场调试头疼的就是由多个网段组成的网络,必须单独测量,检查的方法也很简单,就是排除法。首**行网络分拆,屏蔽网段2,再在cpu上使用终端电阻隔开cpu左边的36个从站,这样可以排除网段间的相互干扰。后发现大量的错误报文还是由cpu右边22个从站设备发出,这样就确定了故障的网段。
首先检查接地,表面看每个站点都接地良好,因为没有考虑到接地电阻,接地线分布等原因,这些问题对于现场临时调试是不可能的事情,所以就算接地良好。
其次查看是否符合profibus安装规范,包括站点间距离、是否有分支等,看了半天也没查出原因,就算是没问题吧,因为查看每一个接头是否虚接同样不现实。都没有问题,现场了解,在cpu右边22个从站设备的网段中进行过改造,添加了新设备,有一个站点添加在原网段,后面又添加了一个中继器用于扩展和隔离,检查了也没有发现问题,那么问题出现在哪里呢?
表面看不出来,只能通过查看一下通信的物理信号,例如是否受到信号干扰以及profibus安装问题等,使用示波器查看的波形图如图2所示,
在波形上可以看到明显的信号反射,通过时间与信号传输速度的关系,计算到反射的位置距离主站大于70米,而70米处正是添加新设备的位置,再去现场重新检查,发现了一个奇怪的安装现象,如图3所示。
现场查看,发现网络后使用中继器与新加站点隔开,由于安装空间问题,还有一个站点在中继器前安装,然后再连接到中继器,连接从站到中继器的电缆与原电缆不匹配,一个新的,一个是旧的,电缆订货号居然不同,难道问题出在这里?使用终端电阻将使用新通信电缆的站点隔离,再看信号波形图,反射信号消失了,问题找到了,使用一段多余的旧线替换新线后,错误报文很少出现。真是没有想到,一小段电缆居然造成整个网络不稳定。
如果通信电缆的特征阻抗不匹配,通信信号就会发生反射,如果通信距离较长,在末端出现反射,对通信造成的危害更大,即使电缆参数相同,但是厂商不同,特征电阻也会有偏差(手册中标有误差范围为正负10%,所以大偏差20%),如果在长距离使用非profibus协会的电缆,通信质量就更难保证,图4的安装不能说错误,但是应注意上述的问题。
如果现场确实有困难,应在两种电缆交汇处使用中继器隔开