6ES7322-5HF00-0AB0
6ES7322-5HF00-0AB0
三、直线电机工作基本原理
直线电机不仅从结构上是从旋转电机演变 而来的,其工作原理也与旋转电机相似,遵 循电机学的一些基本电磁原理。这里直流永 磁直线电机为例子,说明一下直线电机的基本工作原理。
VLP0020-0160是一款音圈电机,和直线 电机在某种程度上是一致的。区别在于,音 圈电机只有一个线圈,磁极一般不超过2对, 只被要求在一对磁极的范围里运动,也就不 需要换相了。当需要突破这种行程限制,就 必需要有更多的磁极,和更多的线圈来接力, 这就是直线电机。所以音圈电机也叫做无换 向直线电机。)
下图表示的是典型的平板直线电机的结构。图中的灰色的部分是底板, 黄色的方块为一块块的永磁体,黄色和灰色部分组成了直线电机的定子。相 邻两个永磁体的极性是相反的,所以磁力线的分布如图中所示。黄色的点表 示次级线圈中导线的横截面。
可以看到导线的方向基本垂直于磁力线的方向,当导线中通过电流时, 会产生安培力。由左手定则可以得知,根据导线中电流方向的不同,可以使 线圈产生向左或者向右的力。这个力就是使直线电机直接做直线运动的推力。
直线电机绝大部分为直流永磁同步直线电机。其他种类 的直线电机,如交流永磁同步直线电机、交流感应直线电机、步进直线电机。这些电机工作的基本原理都是类似的。
位于磁场中的载流导体,该导体受到力的作用,力的方向可按左手定则确定。力的大小由下面公式确定:
绕组形式:
交叉覆盖方式,三个线圈组合占一个极 距,空间利用率高,动子较短。线圈无 效的两边可排列在磁场外,可以增加散热效果。
非覆盖平铺方式,三个线圈占2个极距, 一般用于大推力电机,线圈的成型工艺 简单,但线圈中央必须留空,磁场利用率较低。
对于带铁芯直线电机通常需要采用消齿槽的工艺,斜槽一个方法,还有就是采用分数 槽,错开磁极和铁芯的整倍数关系。
四、直线电机
•小推力款型采用小极距设计(30mm),相同驱动下提高电流分辨率, 负面的影响是电机较宽
•线圈的有效长度比例增加,用于循环的无效长度比例减少,单位重量 的推力有所增大
•采用线圈定型工艺,终线圈排布**,控制精度高
•大推力款型X系列高于大部分竞争对手,如 kollmorgen 1600N,Hiwin1900N,Baldor 2300N,Accel 3000N9
•Hall 传感器采用分体可脱卸设计,增加可维护性,
•高导热树脂
五、直线电机参数
•极距(Electrical Cycle Length)
——一对磁极所占的长度,通常是N-N的距离,一般地推力大的电机, 极距也大,这和一对磁极间所能容纳的导线匝数和长度有关
•推力常数(Force Constant)
——每一安培电流所能产生的推力
•反电动势常数(Back EMF Constant)
——每1米/秒速度产生的反电势电压
•电机常数(Motor Constant)
——线圈产生的推力与消耗功率的比值
•持续电流(Continuous Current)
——线圈可以承受的连续通过的电流,持续通过这个电流时,线圈不会因为超过一定的 温度而有被损坏的危险
•持续推力(Continuous Force)
——当线圈通过负载率的持续电流时产生的推力
•峰值电流(Peak Current)
——线圈短时间内可以通过的大电流,一般峰值电流通过的时间不超过1秒
•峰值推力(Peak Force))
——线圈的通过峰值电流时产生的推力
•线圈高温度(Maximum Winding Temperature)
——线圈可以承受的高温度
•电机电阻(Resistance 25°C, phase to phase)
——线圈在25°C时的相间电阻
•电机电感(Inductance, phase to phase)
——线圈的相间电感
Hall位置反馈
光栅位置反馈
霍尔效应传感器设在马达里被激活 的磁体的面上。在这些信号放大器 转换成适当的相电流。正弦换相是 使用线性编码器信号回到控制器。一个共同的技术是利用霍尔效应同步磁场位置,然后切换到正弦换相。在任何情况下,换相的速度并非是限制因素
西门子6ES7315-6TH13-0AB0型号规格
阀门定位器接受控制信号,经过电子控制单元处理,再经电气转换后驱动调节阀动作,根据阀杆的位置进行反馈,将控制信号与阀位比较,使阀位对应于控制信号,实现调节阀的正确定位,并改善阀杆行程的线性度,克服阀杆的各种附加摩擦力,消除被调介质在调节阀上产生的不平衡力的影响。
智能阀门定位器电路部分采用了CPU运算处理器,将控制阀门开度的输入信号和反应阀门位置的反馈信号经过比较,得到的偏差值通过CPU微处理器处理后输出给压电阀,压电阀作为转换元件,在有偏差值时经过转换去驱动执行机构动作,消耗一定的电能,这样阀门定位器的耗能就比较低。
这是西门子智能阀门定位器相对于其他类型定位器的优越性所在。当定位器初始化后,调节阀的慢步区、死区就确定下来,当偏差大于慢步区时,压电阀持续闭合,阀门动作快,在慢步区,压电阀接收信号小,阀门动作趋缓,在死区,压电阀没有得到信号,阀门不动作,这种工作特性符合工艺控制要求,避免了超调,提高了调节质量。
智能阀门定位器可用于直行程和角行程的阀门。它的操作非常简单,可以在现场通过手动按键和LCD进行操作,也可以在控制室通过HART接口或PROHBUSPA协议选用SIMATICPDM过程设备管理软件对其进行操作,大大方便了使用和维护
在如今工业生产中,只要涉及控制的地方,都离不开plc,PLC柜的布置与设计,是制作PLC柜的基础与关键。
1、柜型的选择
适用于装PLC的柜型,通常选用固定柜,且门板为整门的柜型,如KB柜、九折柜和十六折柜等,不宜选GGD柜、固定分割柜、抽屉柜。因为PLC柜内元件基本上为整板安装,如果采用了柜门分割的柜型,不便于安装和调试。对于GGD柜如果必须选用时,需做一下非标设计,将仪表门、前门和下通风门合并成一个整门,且柜体框架上取消前后横梁,以便于安装和维护。
2、柜体通风系统设计
柜体通风方案,采用前门下进风上出风的形式,后门不加进出风孔。进、出风口分别装1个通风过滤器来防尘,外形尺寸320mm×320mm,进出风面积约008平米。由于PLC柜内的元件发出的热量较少,采用自然对流的方式即可,如果要加快风速,可在门板上半部的出口过滤器上,加装1个轴流风机,向外排风,柜体的顶盖没有通风孔,装无孔顶盖。
3、行线槽规格的选择
行线槽的规格有很多,常用的行线槽宽度为25mm、40mm、60mm、80mm、100mm,高度为40mm、60mm、80mm、100mm,颜色灰色。
选择行线槽的原则通常是根据经过此线槽的线的体积之和(含绝缘层)为线槽容量的80%左右,来选择线槽的规格,余下的空间便于线的散热。计算时可以用截面的关系,即线的截面之和(含绝缘层)为线槽截面的80%左右。
通常大于6平方的线缆,不宜用行线槽来管理线束,但有时为了柜内布置整齐美观,对于特殊的线缆,如网线、元器件的预制电缆等,也放进了行线槽,在装配设计时要特殊考虑,根据线径以及弯曲半径来选择线槽,将电缆整齐的放进线槽内。如图1所示。
4、元器件布置的原则
柜内元器件布置,一般是从上到下,从左向右。便于操作与维护,经常操作或维护的元器件应安装在较容易触及到的位置,从高度上讲,尽量安装在离地面400mm至1800mm的高度范围内。如果元器件较多,可考虑将不常操作的元器件(如直流电源)安装在柜体高度2000mm左右的位置上,底部元件安装位置不能低于离地面200mm,否则现场无法接线。布置时避免线在线槽内反复绕,注意节约成本。
4.1稳压电源布置
稳压电源不需要经常维护,且是发热器件,布置在柜内上部,便于散热。接线少,线槽选用40mm宽即可,线槽深度要整柜考虑,与走线量大的线槽统一(线槽深度选择下同)。稳压电源边缘与线槽之间的净距是30mm左右。
4.2PLC及各单元布置
与CPU单元相邻的单元,好是特殊单元和输入单元等干扰产生少的单元。外部电路的电磁接触器及继电器类,其线圈及接点即干扰发生源,因此应与PLC分开配置。(大致在100mm以上)
此外模块是PLC系统的主要部件,需经常进行调试维护,应安装在方便操作的位置。安装模块时自左向右排布,便于扩展。信号线较多,通常选用80mm宽的线槽,机架上端与线槽的净距在30mm左右,机架下端与线槽的净距在80mm左右。
4.3断路器的布置
安装高度以方便操作为宜,周围不要有妨碍操作的器件。通常选用60mm宽的线槽,断路器的上下边缘与线槽的净距在40mm左右。安装时自左侧开始排布,便于扩展。
4.4继电器、端子排的布置
继电器和端子排一般布置在柜前下部或柜后,端子排优先采用纵向排列,内部线和外部线的线槽要尽量分开,如图2所示。考虑到接线习惯(左手持线,右手拿工具),一般端子左侧的线槽留给客户,便于外部线接入,右侧的线槽用于内部线管理。如果空间紧张,也可以两列端子共用一个内部槽或共用一个外部槽,尽量不要内外部共用一个线槽(有串线情况除外),否则不便管理。线槽的宽度根据继电器和端子的数量合理选择,对于外部线,由于现场的进线一般含有备用
芯、屏蔽层等,线径较粗,外部走线槽要选的尽量大一
4.5交换机和光纤盒的布置
交换机和光纤盒一般布置在柜体下部,预留的走线空间,应充分考虑网线和光纤的打弯半径,尽量大些,方便现场网线和光纤的接入。
4.6柜内照明
柜内顶部装照明灯,由门控开关控制。单面布置的装1套,前后双面布置的装2套。开门时灯亮,关门时灯灭。
4.7接地系统
4.7.1接地母排
在PLC系统内,所有装有PLC设备的控制柜,均应设置PE保护接地母排和TE防干扰接地母排。PE保护接地母排用于连接机架、电源等设备的PE接地点,与柜体直接连接。TE防干扰接地母排与柜体绝缘安装,用于外部信号电缆的屏蔽接地。
4.7.2柜体接地
安装元器件的安装板等结构件与柜体框架要可靠固定,所用连接件要垫上爪型弹垫,从安装板底部用黄绿导线引至PE排上。柜体旋转部件的接地,应使用铜编织带连接到柜体框架上。
4.7.3机架的接地
机架上有专门用于连接PE的接地螺栓,将机架连接到PE母排上。连接PE母排导线的小截面为2mm2。
5、柜内布置及结构设计
根据以上布置原则,结合原理图和分柜清单,绘制柜内布置图。无论是柜体、元器件还是线槽等辅料,都必须采用大外形尺寸,按照1∶1的比例进行绘制。布置图绘制完成后,根据元器件的位置及安装方式,进行安装板的结构设计,安装板的材质通常选用敷铝锌板,厚度在2.0mm~3.0mm。
plc梯形图是使用得多的图形编程语言,被称为PLC的编程语言。梯形图与电器控制系统的电路图很相似,具有直观易懂的优点,很容易被工厂电气人员掌握,特别适用于开关量逻辑控制。梯形图常被称为电路或程序,梯形图的设计称为编程。 plc梯形图编程中,用到以下四个基本概念: 1.软继电器 PLC梯形图中的某些编程元件沿用了继电器这一名称,如输入继电器、输出继电器、内部辅助继电器等,但是它们不是真实的物理继电器,而是一些存储单元(软继电器),每一软继电器与PLC存储器中映像寄存器的一个存储单元相对应。该存储单元如果为“1”状态,则表示梯形图中对应软继电器的线圈“通电”,其常开触点接通,常闭触点断开,称这种状态是该软继电器的“1”或“ON”状态。如果该存储单元为“0”状态,对应软继电器的线圈和触点的状态与上述的相反,称该软继电器为“0”或“OFF”状态。使用中也常将这些“软继电器”称为编程元件。 2.能流 如图1所示触点1、2接通时,有一个假想的“概念电流”或“能流”(Power Flow)从左向右流动,这一方向与执行用户程序时的逻辑运算的顺序是一致的。能流只能从左向右流动。利用能流这一概念,可以帮助我们更好地理解和分析梯形图。图1a中可能有两个方向的能流流过触点5(经过触点1、5、4或经过触点3、5、2),这不符合能流只能从左向右流动的原则,因此应改为如图1b所示的梯形图。
|