6ES7515-2TM01-0AB0现货供应
6ES7515-2TM01-0AB0现货供应
PLC梯形图编程语言是从继电器接点控制线路图上发展起来的一种编程语言,两者的结构非常类似,但其程序执行过程存在本质的区别。因此,同样作为继电器接点控制系统与梯形图的基本组成3要素——触点、线圈、连线,两者有着本质的不同。
1.触点的性质与特点
梯形图中所使用的输入、输出、内部继电器等编程元件的“常开"、“常闭"触点,其本质是PLC内部某一存储器的数据“位"状态。程序中的“常开"触点是直接使用该位的状态进行逻辑运算处理;“常闭"触点是使用该位的“逻辑非"状态进行处理。它与继电器控制电路的区别在于:
①梯形图中的触点可以在程序中无限次使用,它不像物理继电器那样,受到实际安装触点数量的限制。
②在任何时刻,梯形图中的“常开"、“常闭"触点的状态是**的,不可能出现两者同时为“l"的情况,“常开"、“常闭"触点存在严格的“非"关系。
2.线圈的性质与特点
梯形图编程所使用的内部继电器、输出等编程元件,虽然采用了与继电器控制线路同样的“线圈"这一名称,但它们并非实际存在的物理继电器。程序对以上线圈的输出控制,只是将PLC内部某一存储器的数据“位"的状态进行赋值而已。数据“位"置“1"对应于线圈的“得电";数据“位"置“0"对应于“断电"。因此,它与继电器控制电路的区别在于:
①如果需要,梯形图中的“输出线圈"可以在程序中进行多次赋值,即在梯形图中可以使用所谓的“重复线圈"。
②PLC程序的执行,严格按照梯形图“从上至下"、“从左至右"的时序执行,在同一PLC程序执行循环内,不能改变已经执行完成的指令输出状态(已经执行完成的指令输出状态,只能在下一循环中予以改变)。有效利用PLC的这一程序执行特点,可以设计出许多区别于继电器控制线路的特殊逻辑,如“边沿"处理信号等。
3.连线的性质与特点
梯形图中的“连线"仅代表指令在PLC中的处理顺序关系(“从上至下"、“从左至右"),它不像继电器控制线路那样存在实际电流,因此,在梯形图中的每一输出线圈应有各自独立的逻辑控制“电路"(即明确的逻辑控制关系),不同输出线圈间不能采用继电器控制线路中经常使用的“电桥型连接"方式,试图通过后面的执行条件,改变已经执行完成的指令输出
USS通信原理与编程的实现
5. 1 S7 1200 PLC与G120 通过USS通信的基本原理
S7 1200提供了专用的USS库进行USS通信,如下图所示:
图5: S7 1200 专用的USS库
USS_DRV 功能块是S7-1200 USS通信的主体功能块,接受变频器的信息和控制变频器的指令都是通过这个功能快来完成的。必须在主 OB中调用,不能在循环中断OB中调用。
USS_PORT功能块是S7-1200与变频器USS通信的接口,主要设置通信的接口参数。可在主OB或中断OB中调用。
USS_RPM功能块是通过USS通信读取变频器的参数。必须在主 OB中调用,不能在循环中断OB中调用。
USS_WPM功能块是通过USS通信设置变频器的参数。必须在主 OB中调用,不能在循环中断OB中调用。
这些专用功能块与变频器之间的控制关系如下图所示:
图6: USS 通信功能块与变频器的控制关系
USS_DRV功能块通过USS_DRV_DB数据块实现与USS_PORT功能块的数据接收与传送,而USS_PORT功能块是S7-1200 PLC CM1241 RS485模块与变频器之间的通信接口。USS_RPM功能块和USS_WPM功能块与变频器的通信与USS_DRV功能块的通信方式是相同的。
每个S7-1200 CPU多可带3个通信模块,而每个CM1241 RS485通信模块多支持16个变频器。因此用户在一个S7-1200 CPU中多可建立3个USS网络,而每个USS网络多支持16个变频器,总共多支持48个USS变频器。
5. 2 S7 1200 PLC进行USS通信的编程
1.USS通信接口参数功能块的编程
USS通信接口参数功能块的编程如下图所示。
图7: USS通信接口参数功能块的编程
USS_PORT功能块用来处理USS网络上的通信,它是S71200 CPU与变频器的通信借口。每个CM1241 RS485模块有且必须有一个USS_PORT功能块。
PORT:指的是通过哪个通信模块进行USS通信。
BAUD:指的是和变频器进行通行的速率。 变频器的参数P2010种进行设置。
USS_DB:指的是和变频器通信时的USS数据块。每个通信模块多可以有16个USS数据块,每个CPU多可以有48个USS数据块,具体的通信情况要和现场实际情况相联系。每个变频器与S7-1200进行通信的数据块是的。
ERROR:输出错误。
STATUS:扫描或初始化的状态。
S7-1200 PLC与变频器的通信是与它本身的扫描周期不同步的,在完成一次与变频器的通信事件之前,S7-1200通常完成了多个扫描。
USS_PORT通信的时间间隔是S7-1200与变频器通信所需要的时间,不同的通信波特率对应的不同的USS_PORT通信间隔时间。下图列出了不同的波特率对应的USS_PORT小通信间隔时间。
图8:不同的波特率对应的USS_PORT小通信间隔时间
一个电机控制电路如图1所示,电路中使用常开按钮启动电机,用常闭按钮停止电机运行,图1中KM是控制电机电源的继电器。这样的电路若是使用plc时的外接线图如图2所示。同时为使PLC运行,在PLC中输入由图2转换来的图3所示的梯形图程序。
图1 电机控制电路
图2 PLC的外接线图
将图3所示的梯形图下载到PLC中后,发现KM继电器不动作,电机不能启动。这是因为按下启动按钮SB1时,PLC输入继电器00400常开触点接通,而输入继电器00401的常闭触点却因为连接了常闭按钮SB2处于断开状态,所以线圈00300不能得电。怎样才能使线圈00300得电呢?这就需要将00401触点变成常开触点,经过这样变化的梯形图如图4所示。
图3 与继电器控制电路对应的梯形图
图4 将00401触点换为常开触点的梯形图
这样当常闭按钮SB2闭合时,常开触点00401一直闭合,当SB1按钮接通时,00400触点接通,线圈00300得电,KM得电,电机运行;当SB2按钮断开时,00401触点断开,线圈00300失电,KM失电,电机停止运行。
由此可见,如果PLC外接线都选择常开开关,则PLC中运行的梯形图与继电器控制电路图一致;如果PLC外接线选用常闭开关,则在梯形图中对应该常闭开关的位置应该使用常开触点。
通常为了与继电器控制电路图的习惯一致,在PLC的外接线中尽可能采用常开按钮或开关。
为什么会是这样呢?回想PLC输入电路,当外接常开开关断开时,没有电流流进输入电路,代表PLC内部常开触点断开;而当外接常开开关闭合时,电流流进输入电路,代表PLC内部常开触点闭合。外接开关断开与闭合与PLC内部的触点断开与闭合一致。
而当外接常闭开关闭合时,有电流流入输入电路,PLC内部的常闭触点断开;当外接常闭开关断开时,没有电流流入输入电路,PLC内部的常闭触点闭合,可见外接常闭开关的断开与闭合与PLC内部的常闭触点的断开与闭合不一致,所以不能使用PLC内部的常闭触点来代替外接的常闭开关。
在直接将继电器控制电路转换成梯形图时特别要注意这一点。