6ES7511-1UK01-0AB0详细说明
6ES7511-1UK01-0AB0详细说明
一. 概述
随着现代工业的发展,对于产品制造加工所要求的精度越来越高,特别是在电子工业中,所要求生产加工的精度要求很高,在现代日常生活中,许多日用电子产品的更新换代特别快,所用的研制开发、生产周期特别短,而在此环节中,生产环节就显得尤为重要,所以就对生产设备的要求也就越来越高,生产设备要能够适应多种不同产品的生产,特别是新产品的生产适应能力,还要能够保证产品的精度。在TFT生产中,在基板完成电路印刷等一系列的工作以后有一道工序,就是基板的切割,因为在前道生产根据设备和工艺的要求是一块比较大的基板,在一块大的基板上可能有好多块小的基板组成,这根据制造面板本身的用途来定。如手机面板,目前在生产的一块大的基板上有30到104块不等的小的基板组成,这还要根据手机面板的尺寸来定,如图1所示。经过切割以后,变成一片一片小的基板,如图2所示。从图2可以看出,基板由两层玻璃组合而成,在两层之间有印刷电路,而且在切割的时候上下不是在一条线上,而是成一个阶梯状,在TFT面的A处有印刷电路端子,切断过程中不能碰伤端子。在如图3中所示,A-F中5个尺寸精度要全部达到±0.1mm,并且切断后在基板的边缘不能有毛边,这样就要在切断过程中要很好的控制压力、切入量,根据不同玻璃材质就要设定不同的压力和切入量,另外切断的步骤也是比较重要的,一般都采用的步骤是:①CF面 切②TFT面 剖③TFT面 切④C F面 剖。在现在划线设备中都是采用的多把刀(以前都是单刀作业),一般在5-7把刀,此系统中采用了5把刀,在此系统中刀的切入量和左右运动都采用伺服系统来控制,而且都采用了高速运动,这样能够大大提高工作的效率。
二. 系统组成与工作原理
2.1 系统的硬件组成
图3是本系统整个控制系统的原理图,本系统采用Q06H CPU为控制单元,QD75D4和QD75D2为伺服系统的定位单元,还采用了两个QJ74C24通讯模块单元,其中一个与人机界面(A970GOT)连接,另外一个和画像处理系统连接,画像系统主要用于Mark点(也就是标记点)的识别,然后产生一个偏差的补正值。另外与QJ74C24相连接的PC1机是系统机械参数、工作参数设定以及切断程序编制的专用机。PC1与PLC之间的通讯使用的是专门的通讯程序软件。本系统的工作方式是采用偏差补正的方式。对于一个新的品种,首先要进行Mark点的识别,登录,MARK点的形状可以随意,但一般采用的是’十’字为Mark点标记,如图4所示,就是画像处理系统对Mark点的认识过程,认识后产生一个偏差补正量,根据偏差量计算出基准位置。
2.2 软件设计
本系统采用的是A970GOT人机界面,在本系统中人机界面起了非常重要的角色,是其他任何器件都代替不了的。人机界面总共有218个画面组成,主要分两大部分:一是正常的操作人员操作的主画面,二是设备维修、调试人员进入的特殊功能画面,此画面只有工程师级身份人员才能进入,它的参数直接影响设备的正常工作,图6为特殊功能画面的结构图,其中主要是参数设定方面,这里主要介绍轴的位置参数设定,在本系统中主要的部分就是伺服系统,它是保证系统精度的核心,伺服系统的参数、数据设定是非常复杂的,图6为伺服系统参数设定的基本框架结构图,基本参数主要是单位设定、1脉冲的相当移动量、脉冲输出模式、转动方向、速度限制值、加减速时间、马达选择。详细设定除了对上面叙述中一些进行了详细设定以外,还对其他的功能进行了设定,如M代码的取码模式、速度模式、JOG运转、手动脉冲的选择、圆弧误差补正等等。原点复位参数设定主要是复归的方式、方向、原点地址、速度。定位用数据就是我们所要求系统如何去工作、工作的步骤、数据等内容。伺服系统的工作主要是对内部寄存器的地址进行操作,主要分为参数区、监视区、制御数据区、定位数据区、PLC的CPU内存区、块传送区几个部分。在图5系统图中对各个位置的设定(QD75)主要是对基本定位数据的设定,包括定位识别子、M代码、指令速度、定位地址/移动量、突停减速时间、圆弧地址,其中每轴共设定了30点位置,这样可以有效的适应系统切割复杂程度不同的基板。在人机界面的软件设计中,把与伺服系统相关的定位数据参数直接编写在画面中,可以有效的对系统进行调整,改变,在系统中不仅仅上面的这些数据,另外与定位有关的参数设定还有很多,在这里就不一一列举,本系统是一个非常复杂的系统。
2.3 系统的工作原理
系统在机械参数设定好后,首先根据基板的划线数据进行编程,确定划线的数据、MARK点的数据、使用刀的数量、每把刀划每条线的压力、划线的次数等, 以上参数有专门的软件进行编辑。编辑完成后再通过PC1输入PLC 的CPU,在完成数据的编辑后,软件回自动生成切割的模拟画面,确定基板划线的每一步由哪几把刀去做,在完成这一系列的工作后,就要放入基板试作划线,根据系统设定,在放入基板后按下启动按钮,基板平台会自动把基板送到影像处理系统的CCD的下面,在监视器上面看到的就如图4所示,在MARK识别中与系统设定会有一个的偏差,根据这个偏差系统进行补正,现介绍一下补正过程,如图7, 以把刀为例,刀1原点与CCD原点的X向距离D1在系统中设定为一定值,刀1与刀1原点的距离D2为在编制程序是产生,也为一定值,CCD原点与现在CCD之间的距离D3,在编制程序时有一个MARK的坐标值,D3即为基板的X向MARK坐标,D4为MARK点与刀1划基板道线X向距离,在理想状态下为一定值。即可以得出D1+D2=D3+D4,其中D1、D2为固定值,假设D5为CCD识别MARK点的动态坐标,偏差补正为△d,可以得出D5=D3±△d,如在理想状态,CCD识别MARK点的X向坐标刚好为D3,即D5=D3,而每块基板在放置的时候位置会不一样,所以都会有一个偏差△d,根据△d每次在CCD识别MARK点后向刀1移动的距离为D4±△d,这就是偏差补正的过程,其他的刀原理也是这样,在偏转划线时也是根据CCD次MARK识别的坐标了确定的。在划完了TFT面后,在 CF面对TFT面进行剖断,然后在CF面划线,再在TFT面对CF进行剖断,这样就完成了对基板的划线。
三. 技术性能和特点
1. 系统采用了与人机界面相结合,使得系统的布线简单、简洁。
2. 采用了QD75系列的伺服系统定位单元,系统的度精能够达到0.01um。
3. 伺服系统的输出系统具有集电极开路输出和差分输出两种工作方式,在应用时可以根据需要进行选择。
4. 系统的定位范围比较宽,单位可以用um、英寸、度设定。控制系统也比较多样化,能够实现PTP控制、跟踪控制、速度控制、速度-位置控制、位置-速度控制,根据系统的需要可以选择不同的控制系统,另外,还具有圆弧插补功能。
5. 系统响应的时间比较短,因而减少了不同步产生的机会。
6. 系统采用了影像处理系统,这样就提高了系统的精度,对于一些要求不高的场合,系统在工作时影像系统可以选择不使用,但这样可以减少时间,增加工作的效率。
7. 本系统采用了多刀工作方式 ,这样大大的提高了工作的效率,但同时增加了系统在设计时的复杂性,
8. 另外,QD75系列的伺服定位单元具有预读起始功能,这样可以减少定位起始的时间,可以保证快速多种应用的定位。对于QD75系列的定位单元还专门设计了设置/监控软件——QP(GX-Configurator)这样便于定位参数的设定,定位数据的生成和监控。
四. 结束语
本系统是一个比较复杂的系统,在定位方面要求比较高,它的主要工作部件就是伺服系统,对于伺服系统与PLC的编程是比较复杂的,而系统完成后,对于操作人员来说操作是非常简单的。
一简述
OPGW光缆是近几年来流行的特种光缆,其优良的使用方式和广泛的用途使其具有广泛的市场。由于生产这种光缆所需要的不锈钢管,钢丝,铝合金丝和铝包钢丝通常是散圈提供或采用1米盘包装,而OPGW生产线上所使用的线盘规格为0.63米,因此需要一种复绕机,将散装的原材料复绕到0.63米的小盘上。
二技术要求和系统构成
1. 技术要求
· 生产线速度:≥300m/min;
· 张力要求:
A) 不锈钢管:10N≤F≤50N;
B) 钢丝,铝包钢丝:100N≤F≤250N;
C) 铝合金丝:50N≤F≤150N;
· 记米精度:0.2%;
· 排线速度:自动跟踪收线速度;
2. 系统构成(电气部分):
收线,排线和防线电机均采用变频电机,驱动器采用SIEMENS的MM440系列变频器,操作和生产工艺参数显示采用SIEMENS的TP-070触摸屏,全线控制采用 SIEMENS的S7-226+EM-231构成。S7-226的PORT0#用于和MM440通讯 (USS4),PORT1#用于和TP-070通讯。
三各系统简介
1. 收线速度控制
收线用于收卷钢丝,钢管。上下,开合线盘采用电动机带动丝杆的方式。电机采用普通的交流电机加接触器控制。而收线电机采用变频电机和MM440控制。
收线速度由速度电位器通过EM-231送入S7-226,再通过USS4协议由S7-226加到MM440上。由于生产线的速度较快,线盘具有较大的转动惯量。收线的加速度不宜太大,因此收线速度的设定采用PID运算。同时收线盘应采用高速动平衡盘。
驱动器类型: MM440,7.5KW
MM440设定:P700=5
P731=52.3(驱动风机)
P1000=5
P2009=1
P2010=6
P2011=0
2. 线径控制
由于排线速度需根据线径自动跟踪收线速度(U=K * ω * D)。
其中U:排线速度,K:修正系数,ω:收线速度,D:线径。所以排线电机驱动器的设定由以下两个因素决定。
· 收线速度通过旋转编码器测定,其信号通过S7-226的10.6和10.7送入PLC (高速计数器4),PLC编程采用定时中断,在单位时间内测量高速计数器的计数值即为收线速度。
· 线径设定通过TP-070设定,并送入PLC。
PLC将上述两个参数相乘并乘以相应的修正系数(根据机械变速比决定),即为排线速度,通过USS4协议送入MM440。
需要注意的是,由于排线电机在使用过程中需要高速换向,因此当收到换向信号时,电机需要高速的降速和升速过程,MM440需外接制动电阻。
排线驱动器类型:MM440,0.75KW
MM440设定:P700=5
P731=52.3(驱动风机)
P1000=5
P1120=3
P1121=3
P1234=
P1235=
P1237=
P2009=1
P2010=6
P2011=1
3. 放线张力控制
在整条生产线上,收线电机决定线速度,而张力则是由放线电机决定,由于较高的张力要求,放线需采用主动工作方式。
· 当复绕不锈钢管时采用速度方式,P1000=2,速度给定由跳舞轮电位器送入PID 板,经过PID运算由MM440模拟量输入1#口输入。其张力的大小由舞蹈轮的配重决定。
· 当复绕钢丝,铝包钢丝,铝合金丝时采用张力方式,P1000=5,速度给定由USS4协议设定一个反向速度,当钢丝拉紧以后,速度环饱和,根据线速度和放线焦速度即可以确定放线盘半径,根据工艺张力要求,通过设定电机电流比率(P0640)即可以控制张力。
由于在张力方式时放线电机处于发电状态,因此驱动器必须外接制动电阻,制动电阻必须具有足够的制动电流和功率。
放线驱动器类型:MM440,7.5KW
MM440设定:P700=5
P0640=150(速度方式)或根据工艺设定(张力方式)
P731=52.3(驱动风机)
P1000=2或5(根据速度和张力的方式切换由USS4写入MM440)
P1237=5
P2009=1
P2010=6
P2011=2
4. 计米和线速度系统
计米和线速度传感器采用旋转编码器,由S7-226的10.1和10.2端(高速计数器0)送入PLC。统计数据值乘以修正系数(由计米轮径和编码器线数决定)即为计米值。单位时间内高速计数器的计数值即为全线速度。计米值和全线速度通过TP-070显示。
四调试过程中的一些需特别注意的问题
1. 变频电机的连接电缆必须采用屏蔽电缆,并且必须双端接地!在现场调试时,单端接地甚至干扰PLC与笔记本计算机的通讯。
2. 变频器与PLC的接地必须可靠,所有信号电缆的屏蔽层必须双端接地。接地线必须有足够的截面。
3. PLC的M端必须接地。
4. USS4电缆PLC端的连接必须用SIEMENS的DP网络连接器。
5. USS4电缆必须采用SIEMENS的紫色网络电缆。
6. MM440端的485连线绝不能反,否则网络口必然损坏
五设计特点
由于采用USS4协议,电气系统具有以下特点:
1. 电气硬件设计简洁、明快,给调试和维修带来很大方便。
2. 系统抗干扰能力大为提高。
3. 改变工作方式非常方便(由于MM440用BICO技术,通过USS4改变关键参数,即可以达到目的)。
4. 由于采用USS4协议和MM440变频器,大大降低了制造成本。通常类似的系统需采用直流系统,昂贵的直流电机和驱动器,是制造成本居高不下的根本原因。而采用 MM440则可以以较低的成本,达到上述工艺目的。另外由于采用USS4协议可以省略D/A模块,在 一定程度上也可以降低成本。
六存在的问题
1. 当使用张力方式时,通过设定P0640设定张力,线性度不好,效果不是理想。估计所控制的电机电流不是全部用于输出扭矩,有一部分可能用于励磁。
2. MM440内部的PID单元在启动前就开始积分,当启动时,速度瞬时较大,对机械设备有冲击。
3. MM440的网络接线不是牢靠,并且一旦接错必然损坏器件。给现场调试带来很大压力。