西门子6SE7031-8ES87-1FE0参数详细
西门子6SE7031-8ES87-1FE0参数详细
S7-300
一般步骤
S7-300自动化系统采用模块化设计。它拥有丰富的模块,且这些模块均可以独立地组合使用。
一个系统包含下列组件:
CPU:
不同的 CPU 可用于不同的性能范围,包括具有集成 I/O 和对应功能的 CPU 以及具有集成 PROFIBUS DP、PROFINET 和点对点接口的 CPU。用于数字量和模拟量输入/输出的信号模块 (SM)。
用于连接总线和点对点连接的通信处理器 (CP)。
用于高速计数、定位(开环/闭环)及 PID 控制的功能模块(FM)。
根据要求,也可使用下列模块:
用于将 SIMATIC S7-300 连接到 120/230 V AC 电源的负载电源模块(PS)。
接口模块 (IM),用于多层配置时连接中央控制器 (CC) 和扩展装置 (EU)。
通过分布式中央控制器 (CC) 和 3 个扩展装置 (EU),SIMATIC S7-300 可以操作多达 32 个模块。所有模块均在外壳中运行,并且无需风扇。SIPLUS 模块可用于扩展的环境条件:
适用于 -25 至 +60℃ 的温度范围及高湿度、结露以及有雾的环境条件。防直接日晒、雨淋或水溅,在防护等级为 IP20 机柜内使用时,可直接在汽车或室外建筑使用。不需要空气调节的机柜和 IP65 外壳。
设计
简单的结构使得 S7-300 使用灵活且易于维护:
安装模块:
只需简单地将模块挂在安装导轨上,转动到位然后锁紧螺钉。集成的背板总线:
背板总线集成到模块里。模块通过总线连接器相连,总线连接器插在外壳的背面。模块采用机械编码,更换极为容易:
更换模块时,必须拧下模块的固定螺钉。按下闭锁机构,可轻松拔下前连接器。前连接器上的编码装置防止将已接线的连接器错插到其他的模块上。现场证明可靠的连接:
对于信号模块,可以使用螺钉型、弹簧型或绝缘刺破型前连接器。TOP 连接:
为采用螺钉型接线端子或弹簧型接线端子连接的 1 线 - 3 线连接系统提供预组装接线另外还可直接在信号模块上接线。规定的安装深度:
所有的连接和连接器都在模块上的凹槽内,并有前盖保护。因此,所有模块应有明确的安装深度。无插槽规则:
信号模块和通信处理器可以不受限制地以任何方式连接。系统可自行组态。
扩展
若用户的自动化任务需要 8 个以上的 SM、FM 或 CP 模块插槽时,则可对 S7-300(除 CPU 312 和 CPU 312C 外)进行扩展:
中央控制器和3个扩展机架*多可连接32个模块:
总共可将 3 个扩展装置(EU)连接到中央控制器(CC)。每个 CC/EU 可以连接八个模块。通过接口模板连接:
每个 CC / EU 都有自己的接口模块。在中央控制器上它总是被插在 CPU 旁边的插槽中,并自动处理与扩展装置的通信。通过 IM 365 扩展:
1 个扩展装置*远扩展距离为 1 米;电源电压也通过扩展装置提供。通过 IM 360/361 扩展:
3 个扩展装置, CC 与 EU 之间以及 EU 与 EU 之间的*远距离为 10m。单独安装:
对于单独的 CC/EU,也能够以更远的距离安装。两个相邻 CC/EU 或 EU/EU 之间的距离:长达 10m。灵活的安装选项:
CC/EU 既可以水平安装,也可以垂直安装。这样可以*大限度满足空间要求。
通信
S7-300 具有不同的通信接口:
连接 AS-Interface、PROFIBUS 和 PROFINET/工业以太网总线系统的通信处理器。
用于点到点连接的通信处理器
多点接口 (MPI), 集成在 CPU 中;
是一种经济有效的方案,可以同时连接编程器/PC、人机界面系统和其它的 SIMATIC S7/C7 自动化系统。
PROFIBUS DP进行过程通信
SIMATIC S7-300 通过通信处理器或通过配备集成 PROFIBUS DP 接口的 CPU 连接到 PROFIBUS DP 总线系统。通过带有 PROFIBUS DP 主站/从站接口的 CPU,可构建一个高速的分布式自动化系统,并且使得操作大大简化。
从用户的角度来看,PROFIBUS DP 上的分布式I/O处理与集中式I/O处理没有区别(相同的组态,编址及编程)。
以下设备可作为主站连接:
SIMATIC S7-300
(通过带 PROFIBUS DP 接口的 CPU 或 PROFIBUS DP CP)SIMATIC S7-400
(通过带 PROFIBUS DP 接口的 CPU 或 PROFIBUS DP CP)SIMATIC C7
(通过带 PROFIBUS DP 接口的 C7 或 PROFIBUS DP CP)SIMATIC S5-115U/H、S5-135U 和 S5-155U/H,带IM 308
SIMATIC 505
出于性能原因,每条线路上连接的主站不得超过 2 个。
以下设备可作为从站连接:
ET 200 分布式 I/O 设备
S7-300,通过 CP 342-5
CPU 313C-2 DP, CPU 314C-2 DP, CPU 314C-2 PN/DP, CPU 315-2 DP, CPU 315-2 PN/DP, CPU 317-2 DP, CPU 317-2 PN/DP and CPU 319-3 PN/DP
C7-633/P DP, C7-633 DP, C7-634/P DP, C7-634 DP, C7-626 DP, C7-635, C7-636
现场设备
虽然带有 STEP 7 的编程器/PC 或 OP 是总线上的主站,但是只使用 MPI 功能,另外通过 PROFIBUS DP 也可部分提供 OP 功能。
通过 PROFINET IO 进行过程通信
SIMATIC S7-300 通过通信处理器或通过配备集成 PROFINET 接口的 CPU 连接到 PROFINET IO 总线系统。通过带有 PROFIBUS 接口的 CPU,可构建一个高速的分布式自动化系统,并且使得操作大大简化。
从用户的角度来看,PROFINET IO 上的分布式I/O处理与集中式I/O处理没有区别(相同的组态,编址及编程)。
可将下列设备作为 IO 控制器进行连接:
SIMATIC S7-300
(使用配备 PROFINET 接口或 PROFINET CP 的 CPU)SIMATIC ET 200
(使用配备 PROFINET 接口的 CPU)SIMATIC S7-400
(使用配备 PROFINET 接口或 PROFINET CP 的 CPU)
可将下列设备作为 IO 设备进行连接:
ET 200S IM151-8 PN/DP CPU, ET 200pro IM154-8 PN/DP CPU
SIMATIC S7-300
(使用配备 PROFINET 接口或 PROFINET CP 的 CPU)
通过 AS-Interface 进行过程通信
S7-300 所配备的通信处理器 (CP 342-2) 适用于通过 AS-Interface 总线连接现场设备(AS-Interface 从站)。
更多信息,请参见通信处理器。
通过 CP 或集成接口(点对点)进行数据通信
通过 CP 340/CP 341 通信处理器或 CPU 313C-2 PtP 或 CPU 314C-2 PtP 的集成接口,可经济有效地建立点到点连接。有三种物理传输介质支持不同的通信协议:
20 mA (TTY)(仅 CP 340/CP 341)
RS 232C/V.24(仅 CP 340/CP 341)
RS 422/RS 485
可以连接以下设备:
SIMATIC S7、SIMATIC S5 自动化系统和其他公司的系统
打印机
机器人控制
扫描器,条码阅读器,等
特殊功能块包括在通信功能手册的供货范围之内。
使用多点接口 (MPI) 进行数据通信
MPI(多点接口)是集成在 SIMATIC S7-300 CPU 上的通信接口。它可用于简单的网络任务。
MPI 可以同时连接多个配有 STEP 7 的编程器/PC、HMI 系统(OP/OS)、S7-300 和 S7-400。
全局数据:
“全局数据通信”服务可以在联网的 CPU 间周期性地进行数据交换。 一个 S7-300 CPU 可与多达 4 个数据包交换数据,每个数据包含有 22 字节数据,可同时有 16 个 CPU 参与数据交换(使用 STEP 7 V4.x)。
例如,可以允许一个 CPU 访问另一个 CPU 的输入/输出。只可通过 MPI 接口进行全局数据通信。内部通信总线(C-bus):
电气控制原理图是整个设计的中心环节,电气控制原理设计中应该使设计线路简单、正确、安全、可靠、结构合理、使用维修方便,在《绘制电气控制原理图的原则》中有详细介绍,在此不再累述。在本文主要谈谈电气控制原理图设计注意事项: 1、尽量减少控制线路中电流、电压的种类,控制电压等级应符合标准等级,在控制线路比较简单的情况下,可直接采用电网电压,以省去控制电压。当控制系统所用电器数量比较多时,应采用控制变压器降低控制电压,或用直流低电压控制,既省安装空间,又便于采用晶体无触点器件,具有动作平稳可靠,检修操作安全等优点。对于微机控制系统应注意弱电控制强电电源之间的隔离,不能共用零线,以免引起电源干扰。照明、仪表及报警等电路应采用安全电压。 2、尽量减少电器元件的品种、规格与数量。在电器元件选用中,尽可能选用性能优良,价格便宜的新型器件,同一用途尽可能选用相同型号。电气控制系统的先进性总是与电器元件的不断发展、更新紧密联系在一起的,因此,设计人员必须密切关心电机、电器技术、电子技术的新发展,不断收集新产品资料,以便及时应用于控制系统设计中,使控制线路在技术指标、稳定性、可靠性等方面得到进一步提高。 3、正常工作中,尽可能减少通电电器的数量,以利节能,延长电器元件寿命以及减少故障。 4、合理使用电器触头 在复杂的继电接触控制线路中,各类接触器、继电器数量较多,使用的触头也多,线路设计应注意: ①主副触头的使用量不能超过限定对数,因为各类接触器、继电器的主副触头数量是一定的。设计时应注意尽可能减少触头使用数量。因控制需要触头数量不够时,可以采用逻辑设计化简方法,改变触头的组合方式以减少触头使用数量,或增加中间继电器来解决。 ②检查触头容量是否满足控制要求,避免因使用不当而出现触头烧坏、粘滞和释放不了的故障,要合理安排接触主副触头的位置,避免用小容量继电器触点去切断大容量负载。 5、做到正确连线 主要注意以下几方面: ①正确连接电器线圈。电压线圈通常不串联使用,即使是两个同型号电压线圈也不能采用串联施加额定电压之和,以免电压分配不匀引起工作不可靠。对于电感较大的电器线圈,则不宜与相同电压等级的接触器或中间继电器直接并联工作,否则在接通或断开电源时会造成后者的误动作。 ②合理安排电器元件及触点位置。对一个串联回路,各电器元件或触点位置互换,并不影响其工作原理,但从实际连线上却影响到安全、节省导线等方面的问题。 ③注意避免出现寄生回路。在控制电路的动作过程中,如果出现不是由于误操作而产生的意外接通的电路,就出现了寄生回路,可能使电路得不到保护,严重时会烧坏电器。因此,接好线之后,还应多做检查,避免寄生回路的出现。 6、尽可能提高电路工作的可靠性、安全性 这在设计中应注意以下几点: ①注意电器元件动作时间配合不良引起的“竞争”和“冒险”。复杂控制电路中,在某一控制信号作用下,电路从一种状态转换到另一种状态,常常有几个电器元件的状态同时变化,考虑电器元件总有一定的动作时间,对时序电路来说,就会得到几个不同的输出状态,就会产生“竞争”。对于开关电路,由于电器元件的释放延时作用,也会出现开关元件不按要求的逻辑功能输出的可能性,就会产生“冒险”。“竞争”与“冒险”现象都将造成控制回路不能按要求动作,引起控制失灵。所以,在设计电路图时,应要考虑好元件的动作时间。 ②要考虑误操作可能带来的危害。设计电路时,特别对于一些重要的设备应要仔细考虑每一控制程序之间必要的联锁,事先预知误操作时可能带来的各种危害,提前改变思路作出预防,能够做到即使发生误操作也不会造成事故。 ③应要考虑到在故障状态下,设备的自动保护作用,同时根据设备特点及使用情况设置必要的电气保护。 7、线路设计要考虑操作、使用、调试与维修的方便。 8、原理图绘制应符合国家有关标准规定 其中包括器件图形符号应符合国标关于电气图形符号的规定,绘制时要合理安排版面等。为了帮助读图,有时以动作状态或工艺过程形式将主令开关的通断、电磁阀动作要求、控制流程等表示在图面上,也可以在控制电路的每一支路边上标注出控制目的。 电气控制原理图在设计过程中起着决定性的作用,任何设计人员都必须得本着科学、严谨的态度,不得马虎 |