全国服务热线 15221406036

枣庄西门子模块代理商

更新时间:2024-05-08 07:10:00
价格:¥666/件
品牌:西门子
产品规格:模块式
产地:德国
联系电话:
联系手机: 15221406036
联系人:聂航
让卖家联系我
详细介绍

枣庄西门子模块代理商

变频器输入端电源滤波器是采用高导磁率的铁氧体磁心及铁粉芯,配接一定的电容,构成LC滤波器,将变频器产生的高次谐波(在某一频带内的)滤掉,而使临近或同一电网工作的电器设备不受干扰,能够正常工作。其原理图如图1所示。

  

                                                            图1 输入滤波器电路原理图

  变频器输出端电源滤波器采用电感(L)滤波,抑制变频器输出的传导干扰和减少输出线上低频辐射干扰,使直接驱动的电机电磁噪声减小,使电机的铜损、铁损大幅减少。其原理图如图2所示。

 

 购买了该类滤波器后,我们去现场进行了调试。由于对该类现场接触较少,技术人员准备不太充分,虽然增加了滤波器,但滤波效果仍不理想,在重载时仍存在干扰,DCS系统不能正常工作,变频器仍无法运行。于是我们对问题做了具体的分析。

  变频器产生干扰的原因

  

                                                                    图3 变频器主电路图

  变频器主电路一般是交流—直流—交流模式见图3,外部输入380V/50Hz的工频电源经三相桥路不可控整流成直流电压信号,经滤波电容滤波及大功率晶体管开关元件逆变为频率可变的交流信号。在整流回路中,输入电流的波形为不规则的矩形波,波形按傅立叶级数分解为基波和各次谐波,其中的高次谐波将干扰输入供电系统。在逆变输出回路中,输出电流信号是受PWM载波信号调制的脉冲波形,对于GTR大功率逆变元件,其PWM的载波频率为2~3kHz,而IGBT大功率逆变元件的PWM载频可达15kHz。同样,输出回路电流信号也可分解为只含正弦波的基波和其他各次谐波,而高次谐波电流对负载直接干扰。另外高次谐波电流还通过电缆向空间辐射,干扰邻近电气设备。

  变频器干扰的主要传播途径

  变频器工作时,作为一个强大的干扰源,其干扰途径一般分为辐射、传导、电磁耦合、二次辐射和边传导边辐射等。主要途径如图4所示:

  

                                                        图4变频器干扰的主要传播途径

  从上图可以看出,变频器产生的辐射干扰对周围的无线电接收设备产生强烈的影响,传导干扰使直接驱动的电机产生电磁噪声,使得铜损、铁损大幅增加,同时传导干扰和辐射干扰对电源输入端所连接或邻近的电子敏感设备有很大的影响。

  针对这两次调试情况和变频器产生干扰及干扰的途径,我们联合电源滤波器生产厂商的工程师进行了分析总结,并与北京康拓生物工程有限公司的工程师多次进行了沟通,了解了其工作原理、布线情况,分析认为主要还是变频器输入端产生的高频谐波造成的干扰。因装变频器后,变频器的输入线在原动力线槽内,而输出线不在线槽内,离电机也比较近。再者,原布线系统不太合理,动力线槽与控制线槽距离较近,只有20cm,按规定应不少于50cm,且两线槽平行走线,这些都是比较忌讳的。变频器的地线接的也不太合理,接在了电源线的走线槽上,线槽的作用一是支撑电源线、二是起屏蔽的作用,变频器的干扰又通过地线到了线槽上。变频器产生的高次谐波通过变频器的输入线和地线辐射到其它设备的电源线和信号线上(尤其是比较敏感的传感器的信号线。这里强调一点:我们的变频器与DCS控制系统不是同一台变压器给电,可以排除直接传导干扰),干扰了控制系统的正常工作。

  分析这些问题,由于原布线系统已成定型,再动几乎是不可能,因此改变电源线和信号线布线的想法应予以排除,变频器地线可以另走,拉一根地线直接接至配电室电控柜的地线上,对变频器的输入端再加强滤波措施,按理论问题应于解决。

在现场原发酵罐停车后,我们在原滤波器基础上又增加了一套共模及差模磁环,在输入、输出每相线上各套二个差模环,在输入的三根相线上套两个共模磁环,并将地线接至配电室的地上。这样处理后开机运行,在电机空载的情况下运行正常,没有出现干扰报警现象。

  带载运行时,305、307罐出现干扰报警。将地线改至控制307罐(该罐已使用变频器,线槽内走的是该变频器的输出线)变压器的地线上,305罐不再干扰报警,但307罐仍间隔几分钟出现干扰报警现象,分析可能是两台变频器产生的共模干叠加所至,也可能是地线放在动力线槽内,走线较长引起的,于是在地线上加装地线滤波器,但效果也不太好。后来将地线拆除(经测量变频器整机漏电流很小,对人体不会造成危害,所以可以将地线拆除),效果好一些,但报警现象也是间断出现,这样分析应该不是地线引起的,还是输入端的滤波措施不够,没有将高频干扰滤除干净。因此停机,在输入的每相线上再加两只差模环,在三条输入相线上再套三个共模环,这样开机运行,工作正常,整个系统不再出现干扰现象。系统处理后的框图如图5所示。

  

6、ModbusTCP通信库

上位机开发功能实现的核心在于ModbusTCP通信库编写,由于Modbus协议是公开免费,可以自己根据Modbus协议来开发,也可以使用开源的Modbus库,如NModbus等,有了ModbusTCP通信库之后,我们可以将更多的精力放在业务处理及逻辑处理上面。

7、ModbusTCP通信点表

上位机开发功能

1、首先创建一个Windows窗体应用项目,项目名称为thinger.cn.MotionPro。

2、日志显示功能:日志显示采用ListView进行显示,绑定一个ImageList用来区分信息、报警、错误,添加日志方法的参数包含日志等级及日志内容。

3、自己开发ModbusTCP通信库或者使用开源库,该库应该具备建立连接、断开连接、预置寄存器、读取寄存器的功能。

4、建立连接和断开连接:这里通过按钮实现建立连接和断开连接2个功能。

5、相对位置运动:设置相对运动速度和相对运动位置,实现电机的相对运动。

6、位置运动:设置运动速度和运动位置,实现电机的相对运动。

7、点动运动模式:设置点动运动速度,按住正向点动或者反向点动,实现电机的点动运动。

8、回原点模式:点击回原点,可以控制物体回到原点位置并停止。

9、运动停止、运动暂停、复位相关功能

一、工艺描述
  安徽省六安市第二自来水厂座落在该项市南郊的淠河旁边,因自来水厂已经停用,所以该厂目前成为六安市唯一的供水厂。该厂原设计供水能力10万吨/天,通过扩建改造达到14万吨/天。
  同大部分水厂一样,其工艺流程图如下图所示:
  


  ●源水泵房:用来将源水送到预处理的沉淀池中
  ●加药:将配好的矾液添加到源水中进行混合
  ●平流沉淀池:添加矾液经混合后,用于将水中絮凝物沉淀出来的池子
  ●滤池:池内的主要物质为石英砂,对从沉淀池来的水进行过滤,加氯之后,流入清水池
  ●加氯:将水中通入氯,主要作用是杀菌、消毒
  ●送水泵房:将清水池的水通过恒压供水装置送入自来水管网
  二、控制任务
  为提高供水系统的安全性、可靠性,采用了以下的改造方案
  ●加药系统,使其具有自动加药的功能
  ●通过对滤池反冲洗的改造,使其具有自动反冲洗的功能,省去繁索的人工操作
  ●增设了自动加氯机,使其根据出水余氯值,自动控制加氯量
  ●改造低压配电系统,使之对电压、电流、有功功率、无功功率及功率因数具有远程监测、记录、报警的功能
  ●建立水厂中控室,实现三级自动化监控,通过中控室的通讯工作站一方面将数据送到模拟屏上,另一方面通过无线数传电台将数据送到市自来水公司
  三、控制方式介绍
  整个六安二水厂的控制网络如下图
  


  2台上位机监控主站通过5613卡与下面3台PLC分站通讯,通讯方式采用PROFIBUS-FMS总线方式,每个PLC分站选用S7-300,CPU为315-2DP,FMS通讯模块选用的是CP343-5,并且每个分站通过MPI口连接一个TP27-10”的触摸屏。
  滤池分站PLC1通过集成的PROFIBUS-DP下面连了16个S7-200滤池子站和1个S7-200反冲洗子站。每个滤池子站通过编程口挂一个TP070触摸屏,每个滤池子站控制每格滤池的运行。反冲洗子站的S7-200通过自由口协议与反冲洗泵变频器MM430进行通讯。
  出水泵房分站PLC2通过接口模块IM360和IM361扩展了两个机架,在CPU的MPI口又连了一台工控机,作为泵房的监控站,工控机的通讯卡为CP5611卡。通过集成的PROFIBUS-DP口连了一个ET200M分布式I/O和一个S7-200,ET200M安装在取水泵站,用以对取水泵及进水阀的控制,S7-200为CPU226,通过自由口与出水泵的变频器通讯。CP340模块利用RS485口与配电中心的电量监测仪表HC6000相连,通过Modbus协议进行通讯。将采集的电量参数送给监控计算机。
  加药分站PLC3配置了一块CP340、一块CP341及一些I/O模块。CP340与10台电机保护仪通过RS-485口进行通讯,CP341与二台加氯机进行通讯,加氯机的通讯波特率为19200bit/s,而CP340的大速度为9600 bit/s,所以选择了CP341与加氯机通讯。
  两台监控主站通过网络交换机与通讯工作站组成以太网,通讯工作站的计算机采集监控计算机的数据。一方面通过串口1与模拟屏(6×2.8米)通讯,将水厂参数实时在模拟屏上显示;另一方面通过串口2与数传电台相连,将数据经电台传送至自来水公司的通讯主机上。
  整个水厂的控制方式分三级,现地、分站控制、远程控制。当现地的转换手柄置于现地操作方式时,此时的优先级高,禁止上位对其操作;当转换手柄转换至远程时,此时由中控室的监控主机进行控制,主机可以选择是否让触摸屏操作,也可随时取消触摸屏的操作。
  


  四、控制难点
  自动加药一般是水厂控制的一个难点,因为加药控制主要是控制加药量,也就是控制计量泵的转速,本方案采用出水浊度仪的输出信号(4~20mA)作为计泵泵的反馈,但因从加药到出水,中间需要较长的时间,所以在控制方面有较大的滞后,为解决这个问题,通过对过去的加药经验和现实已知的对象状况(原水浊度、温度、流量、PH值等)的分析,推断出目前实际需要的加药量,根据出水浊度对投药量作微调,结合实际水流量将数据送至执行机构,该方案充分利用工控机的运算能力。
  中控室两个监控主站的应用软件采用的是WICC组态软件,利用Profibus-FMS与下面3个PLC分站通讯,当运行一台监控主机时,只能读到PLC1和PLC3子站,PLC2的数据读不到,检查线路也没有问题,如果两台上位机同时运行,有一台主机能读到PLC1和PLC3站,另一台主机却只能读到PLC3站。经咨询西门子技术支持和查阅有关资料,判断可能原因是CPU的通讯资源有限,选用的CPU为6ES7 315-2AF03-OABO,我也做过一个试验,如果将PLC2的触摸屏去掉,监控主机就可采集到该站的数据,所以证实上述的分析。
  解决的办法:更换新的CPU(6ES7 315-2AG10-OABO)后,并在编程软件STEP7 5.1的硬件配置中更换CPU的配置,随后将CPU的属性打开,在Communication选项中将OP Communication中的默认值1改为4,S7 Standard默认值12改为8即可。后将硬件配置下载到CPU后,下面每个站的数据都能读取,因为新的CPU支持大16个连接点,
  四、结束语
  该自动控制系统充分利用了西门产品分散式结构和多界面的网络功能,应用十分灵活。经使用一年多的使用,系统运行较稳定,未出现异常。
  
  参考文献:
  1、S7-300可编程控制器产品目录
  2、西门子工业通讯及现场设备产品目录2001
  3、STEP7 5.1编程手册


联系方式

  • 地址:上海松江 上海市松江区石湖荡镇塔汇路755弄29号1幢一层A区213室
  • 邮编:201600
  • 联系电话:未提供
  • 经理:聂航
  • 手机:15221406036
  • 微信:15221406036
  • QQ:3064686604
  • Email:3064686604@qq.com