全国服务热线 15221406036

秦皇西门子S7-1200代理商

发布:2024-03-20 15:17,更新:2024-05-08 07:10

秦皇西门子S7-1200代理商

一、 S7-200PLC内部RS485接口电路图:
图中R1、R2是阻值为10欧的普通电阻,其作用是防止RS485信号D+和D-短路时产生过电流烧坏芯片,Z1、Z2是钳制电压为6V,大电流为10A的齐纳二极管,24V电源和5V电源共地未经隔离,当D+或D-线上有共模干扰电压灌入时,由桥式整流电路和Z1、Z2可将共模电压钳制在±6.7V,从而保护RS485芯片SN75176(RS485芯片的允许共模输入电压范围为:-7V~+12V)。该保护电路能承受共模干扰电压功率为60W,保护电路和芯片内部没有防静电措施。


二、常发生的故障现象分析:
    当PLC的RS485口经非隔离的PC/PPI电缆与电脑连接、PLC与PLC之间连接或PLC与变频器、触摸屏等通信时时有通信口损坏现象发生,较常见的损坏情况如下:
    R1或R2被烧断,Z1、Z1和SN75176完好。这是由于有较大的瞬态干扰电流经R1或R2、桥式整流、Z1或Z1到地,Z1、Z2能承受大10A电流的冲击,而该电流在R1或R2上产生的瞬态功率为:102×10=1000W,当然会将其烧断。
    SN75176损坏,R1、R2和Z1、Z2完好。这主要可能是受到静电冲击或瞬态过电压速度快于Z1、Z2的动作速度造成的,静电无处不在,仅人体模式也会产生±15kV的静电。
    Z1或Z2、SN75176损坏,R1和R2完好。这可能是受到高电压低电流的瞬态干扰电压将Z1或Z2和SN75176击穿,由于电流较小和发生时间较短因而R1、R2不至于发热烧断。
    由以上分析得知PLC接口损坏的主要原因是由于瞬态过电压和静电造成,产生瞬态过电压和静电的原因很多也较复杂,如由于PLC内部24V电源和5V电源共地,24V电源的输出端子L+、M为其它设备混合供电可能导致地电位变化,从而造成共模电压超出允许范围。所以EIA-485标准要求将各个RS485接口的信号地用一条低阻值导线连接在一起以保证各节点的地电位相等,消除地线环流!
    当带电插拔未隔离的连接电缆时,由于两端电位不相等电路中又存在诸多电感、电容之类的器件,插拔瞬间必然产生瞬态过电压或过电流。
    连接在RS485总线上的其它设备产生的瞬态过电压或过电流同样会流入到PLC,总线上连接的设备站点数越多,产生瞬态过电压的因素也越多。
    当通信线路较长或有室外架空线时,雷电必然会在线路上造成过电压,其能量往往是巨大的,常有用户沮丧地说:“联网的几十台PLC全部遭打坏了!”。
三、 解决办法:
1、从PLC内部考虑:
    采用隔离的DC/DC将24V电源和5V电源隔离,我们分析了三菱、欧姆龙、施耐德PLC以及西门子的PROFIBUS接口均是如此。
    选用带静电保护、过热保护、输入失效保护等保护措施完善的高挡次RS485芯片,如:SN65HVD1176D、MAX3468ESA等,这些芯片价格一般在十几元至几十元,而SN75176的价格仅为1.5元。
    采用响应速度更快、承受瞬态功率更大的新型保护器件TVS或BL浪涌吸收器,如P6KE6.8CA的钳制电压为6.8V,承受瞬态功率为500W,BL器件则可抗击4000A以上大电流冲击。
    R1和R2采用正温度系数的自恢复保险PTC,如JK60-010,正常情况下的电阻值为5欧,并不影响正常通信,当受到浪涌冲击时,大电流流过PTC和保护器件TVS(或BL),PTC的电阻值将骤然增大,使浪涌电流迅速减小。
2、从PLC外部考虑:
    使用隔离的PC/PPI电缆,尽量不用廉价的非隔离电缆(特别是在工业现场)。西门子公司早期出产的PC/PPI电缆(6ES7 901-3BF00-0XA0)是不隔离的,现在也改成隔离的电缆了!
PLC的RS485口联网时采用隔离的总线连接器,如PFB-G,速率为0~1.5Mbps自动适应,外形和使用方法与西门子非隔离的总线连接相同。
    与PLC联网的第三方设备,如变频器、触摸屏等的RS485口均使用RS485隔离器BH-485G进行隔离,这样各RS485节点之间就无“电”的联系,也无地线环流产生,即使某个节点损坏也不会连带其它节点损坏。
    RS485通信线采用PROFIBUS总线专用屏蔽电缆,保证屏蔽层接到每台设备的外壳并后接大地。
对于有架空线的系统,总线上好设置专门的防雷击设施。

1引言
可编程序控制器(PLC, Programmable Logic Controller)是采用微电脑技术制造的自动控制设备。他以顺序控制为主,回路调节为辅,能完成逻辑判断、定时、记忆和算术运算等功能。
随着PLC技术的发展,其功能越来越多,集成度越来越高,网络功能越来越强,PLC与上位PC机联网形成的PLC及其网络技术广泛地应用到工业自动化控制之中,PLC集三电与一体,具有良好的控制精度和高可靠性,使得PLC成为现代工业自动化的支柱。PLC的生产厂家和型号、种类繁多,不同型号自成体系有不同的程序语言和使用方法,本文拟就用日本立石公司生产的OMRON C20p型PLC,设计几个PLC在三相异步电机控制中的应用,与传统的继电器控制相比,具有控制速度快、可靠性高、灵活性强等优点,可作为高校学生学习PLC的控制技术的参考,也可作为工业电机的自动控制电路。
2PLC在电机控制中的应用[1~3]
2.1三相异步电机的正反转控制
要求当按下正转按钮,电机连续正转,此时反转按钮不起作用(互锁),按下停止按钮电机断开电源,按下反转按钮电机连续反转,正转不起作用。图1所示为三相异步电机的正反转控制原理图。
2.2三相异步电机的Y—△启动
要求起动时电机接成Y型,经过一段时间自动转化为△形运行,要求Y形断开后△形才能启动,防止Y形未断△形启动造成电源短路。图2所示是三相异步电机Y—△启动控制原理图。
2.3三相异步电机时间控制
要求第1台电动机M1启动5 s后,第2台电动机M2自动启动,只有当第2台M2停止后,经过5 s延时,M1自动停止。图3所示是三相异步电机时间控制原理图。
3程序的写入与运行
将PLC联上编程器并接通电源后,PLC电源指示灯亮,将编程器开关打到“PROGRAM”位置,这时PLC处于编程状态。编程器显示PASSWORD!这时依次按Clr键和Montr键,直至屏幕显示地址号0000,这时即可输入程序。
在输入程序前,需清除存储器中内容,依次按Clr、Play/Set, Not,Rec/Reset和Montr键,即将全部程序清除。按照以上3种控制的梯形图或程序指令将3种控制程序写入PLC,当上述3部分程序输入到PLC机中后,用上下方向键读出所写程序,如程序有错,可用插入指令和删除指令修改程序。
程序输入正确后,分别按图1(a)和(c)连接PLC外部接线及主回路线路实现电机正反转控制,按图2(a)和(c)连接线路实现电机Y—△启动,按图3(a)和(c)连接线路实现电机的时间控制。此设计可以一次性把3种控制电路的程序全部输入,同时控制3种电路,运行时,按下SBF,SBR电机正反转启动,按下SB1,SB2控制电机Y—△启动,按下SB3,SB4电机顺序启动,互不干扰,事半功倍,实现了一台PLC同时控制多种电路形式。

 

1.用二极管按二进制的办法连接,用四个点就可以接受能15个按钮.

2.单按钮的控制方法





1 引言
可编程控制器(以下简称PLC)由于其高可靠性、编程简单、通用性强、体积小、结构紧凑、安装维护方便等特点,而在工业控制中得到了广泛应用。PLC的模块一般分为以下几大类:开关量输入模块、开关量输出模块、模拟量输入模块、模拟量输出模块。在工业控制中特别是过程控制领域中需要采集和控制的模拟量比较多,因而对PLC的模拟量输入、输出模块需要的较多,而模拟量输入、输出模块比较贵,增加模拟量输入、输出模块就增加了成本,降低了整个系统的性价比,限制了PLC的应用。本文提出了一种基于通讯的模拟量输入、输出模块的扩展方法力图解决这一问题。
2 基于通讯的模拟量输入、输出模块的扩展方法
(1) 模拟量输入模块扩展
这里以一路12位模拟量输入为例,模拟信号以0~5V标准电压的形式送入信号输入端,应用12位A/D转换芯片MAX187实现模数转换。MAX187是12位串行A/D,具有较高的转换速度,采样频率是75kHz,适用于较高精度的过程控制。考虑到实际工业现场中的高频干扰,在采样信号送MAX187之前还使用了低通滤波器滤波,如图1所示。

图1 低通滤波、放大器及A/D转换

MAX187具有内部参考电压,既4#管脚(REF)为 4.096V,因此,A/D转换的全量程为4.096V。而输入信号是0~5V,因此,要加一级运放把0~5V转换成0~4.096V后送入MAX187。AT89C52的P1.3和MAX187的片选端(CS)相连、AT89C52的P1.4和MAX187的串行时钟信号端(SCLK)相连、AT89C52的P1.5和MAX187的串行数据输出端(DOUT)相连。模拟量采样的值存入单片机的内存中,再由单片机的串行口传送给PLC。A/D转换的C51程序如下:
#include
#include
sbit IC4_S = P1^4; /* AD输入端口设置*/
sbit IC4_D = P1^5;
sbit IC4_C = P1^3;
void bbbbb(void )
{ unsigned char idata i;
unsigned int idata result=0x0000;
IC4_C = 0; /* CS端为低电平*/
for(i=0;i<12;i++)
{ result = result << 1;
IC4_S = 0; /*时钟端产生时钟脉冲*/
IC4_S = 1;
if( IC4_D ) result++; /*从串行数据输出端读入A/D转换数据*/
}
IC4_C = 1; /* CS端为高电平*/
pdat[1] = result;
}
MAX187的工作时序图见图2。


图2 MAX187的工作时序图

(2) 模拟量输出模块扩展
这里以一路12位模拟量输出为例,设计中将采用12位D/A转换芯片MAX531来实现数摸转换。我们在MAX531的输出端接运算放大器,将模拟输出调节至0~5V,输出部分的硬件电路如图3所示。这里,MAX531是12位串行D/A,具有较高的转换速度, MAX531具有内部参考电压,既10#管脚(REFOUT)为2.048V,因此, D/A转换的全量程为2.048V。而输出信号一般要求是标准的0~5V,因此,要加一级运放把MAX531输出的0~2.048V信号转换成 0~5V信号。AT89C52的P1.0和MAX531的串行时钟信号端(SCLK)相连、AT89C52的P1.1和MAX531的串行数据输入端(DIN)相连、AT89C52的P1.2和MAX531的片选端(CS)相连。PLC把要输出的模拟量通过串行口传送给单片机,存入的内存中,再由单片机完成D/A转换进行输出。A/D转换的C51程序如下:


图3 D/A转换及放大器原理图

#include
#include
sbit IC2_S = P1^0; /*DA输出端口设置*/
 

sbit IC2_D = P1^1;
sbit IC2_C = P1^2;
void output(unsigned int dat)
{ unsigned char idata i = 12;
IC2_C = 0; /* CS端为低电平*/
while( i-- )
{ IC2_S = 0; /*时钟端产生时钟脉冲*/
if ( dat &0x0800 ) IC2_D =1; /*从串行数据输入端读入DA转换数据*/
else IC2_D =0;
IC2_S = 1;
dat = dat << 1;
}
IC2_C=1; /* CS端为高电平*/
}
MAX531的工作时序图见图4。

图4 MAX531的工作时序图


3 PLC与扩展模块之间的通信接口及通信协议
(1) 通信接口
以松下FP1系列PLC为例来阐述PLC与扩展模块之间的通信,FP1系列PLC的通信接口采用标准9芯RS232接口,它与扩展模块之间的接线如图5所示。
 

图5 扩展模块与PLC的通讯连接


· 扩展模块的RXD端与PLC的TXD端联接,使扩展模块接收到PLC发出的数据;
·扩展模块的TXD端与PLC的RXD端联接,使扩展模块发出的数据被PLC接收到;
· 扩展模块的地与PLC的SG端互联,使两者的工作基准地电平相同。

上面采用的是RS232接口,PLC一次只能扩展一个模块。如果要扩展多个模块,可以采用RS485接口,现代的PLC一般都带有RS485接口。

(2) 通信协议
松下FP1系列PLC与扩展模块之间的通信协议为松下公司专用的MEWTOCOL-COM协议,该协议采用异步通信方式,其波特率有1200、2400、4800、9600、19200、38400、57600、115200bps等多种可选,且报文长度可变可固定。该协议格式分为命令消息(Command Message),正常响应消息(Response Message-normal),出错响应消息(Response Message-error)三种。
· 扩展模块的RXD端与PLC的TXD端联接,使扩展模块接收到PLC发出的数据;
·扩展模块的TXD端与PLC的RXD端联接,使扩展模块发出的数据被PLC接收到;
· 扩展模块的地与PLC的SG端互联,使两者的工作基准地电平相同。

上面采用的是RS232接口,PLC一次只能扩展一个模块。如果要扩展多个模块,可以采用RS485接口,现代的PLC一般都带有RS485接口。

(2) 通信协议
松下FP1系列PLC与扩展模块之间的通信协议为松下公司专用的MEWTOCOL-COM协议,该协议采用异步通信方式,其波特率有1200、2400、4800、9600、19200、38400、57600、115200bps等多种可选,且报文长度可变可固定。该协议格式分为命令消息(Command Message),正常响应消息(Response Message-normal),出错响应消息(Response Message-error)三种。
其中:%为起始符,标记每一帧报文的开始;CR为结束符,标记每一帧报文的结束;
AD为PLC的站地址,为两位16进制数,如00则表示台PLC;
#、$、!标注该帧报文为何种类型。
Command code为命令代码,如例1中的“RD”,表示读数据区。Response code为响应代码一般返回接收到的命令消息中的命令代码。Error(H)和Error(L)为出错代码,是两位16进制数, 可根据其值在协议中查出错误的描述。
Text code为命令参数,如例1命令消息中“D 01105 01107”,“D”表示数据寄存器,“01105 01107”表示第1105号至1107号,而在例1响应消息中,“6300 4433 0A00”则表示DT1105至DT1107中数据分别为6300、4433、0A00。
BCC(H)和BCC(L)为前面字符串的BCC校验码的高、低位,为两位16进制数。其初值为0,然后从起始符开始与该帧报文中每一字节按位进行异或运算得到。
l 例1:读取DT1105至DT1107中的数据的命令消息如下:

若DT1105至DT1107中数据分别为6300、4433和0A00,PLC返回的响应消息如下:

那么, 模拟量输入扩展模块与PLC通讯的报文可如下:

表示1号模拟量输入扩展模块把模拟量采样值0FFF存入PLC的第1105个数据寄存器
模拟量输出扩展模块与PLC通讯的报文可如下:

表示1号模拟量输出扩展模块请求把PLC中第1106个数据寄存器保存的模拟量输出值读入。
若DT1106中数据为0fff,PLC返回的响应消息如下:

1号模拟量输出扩展模块就把接收到的数字量0fff转换成模拟量输出。
4 结束语
本文提出的方法已在实验室中调试通过,并多次长时间运行测试,以验证其准确性与稳定性,收到了令人满意的效果,通信十分稳定可靠。各位读者可在本文的基础上,开发出8路、16路8位、10位、12位等模拟量输入、输出扩展模块;本文使用的是松下公司已有的MEWTOCOL-COM协议,读者也可以自己编制通讯协议。本文意在提出一种低成本的PLC模拟量输入、输出模块扩展方法,如果要把它变成产品还有很长的路要走,例如,如何让用户使用得更方便,可靠性更高等等。这些都是需要进一步完善的。


联系方式

  • 地址:上海松江 上海市松江区石湖荡镇塔汇路755弄29号1幢一层A区213室
  • 邮编:201600
  • 联系电话:未提供
  • 经理:聂航
  • 手机:15221406036
  • 微信:15221406036
  • QQ:3064686604
  • Email:3064686604@qq.com