全国服务热线 15221406036

珠海西门子S7-300代理商

发布:2023-12-19 15:45,更新:2024-05-08 07:10

珠海西门子S7-300代理商

1  引言
        轴承切管机是轴承加工领域的初工序加工机械,它主要是把空心管按照轴承高度的需要,切成等长尺寸的小圈,通常机器在一个轴承加工厂里面需要很多台机床连续工作。以往的切管机是在机械上调整切管的长度,也就是送一次料到平头,然后伺服或者步进控制的刀头切一次料,然后再送一次料,这样循环,但是往往这样的切管效率比较低下,而且送料部分经常因为送不到位,而导致机械定位不准确而切出来的圈不合格,增加报废率,针对此问题,设计了一种新型的双轴切管机,也就是圈的长度不是靠送料和平头来保证,而是通过伺服定位来确定圈长,同样一次送料可以连续切好多个产品,并且没有废料,可以做到真正的高效全自动切管,而且全方位的保护功能,可以保证一个工人可以同时管至少三台以上这样的机器,在人力成本不断增加的现在,此机器势必成为此领域的佼佼者。


2  双轴伺服切管机自动化系统设计
        双轴伺服切管机核心的部分是两轴伺服的循环配合动作,一轴为拖板轴向轴,另一轴为切刀切向轴,拖板轴向轴主要是做圈长定位用的,(a)当轴向往管的方向走的时候,当定位传感器碰到管的头部的时候就确认管的位置,进PLC硬件中断,进行脉冲禁止,然后再根据切管的长度做一个补偿定位;(b)定位完毕切向切刀进行切管,切管完毕;轴向继续前进重复a,b的动作,直至切到管子送料的末端,也就是极限位置,轴向退回,然后送料,送料完毕,重复a,b动作,这就是双轴伺服切管的基本的动作流程。双轴伺服切管机与普通切管机的机械构架如图1所示。


3  台达PLC控制方案
3.1 PLC双轴伺服
        由于使用了双轴伺服控制,所以方案中使用的是32EH00T2型PLC主机做定位控制,同时利用中断方式来实现轴向定位的切换。由于使用的是接触式传感器(X0)外部中断来做脉冲禁止,然后切换到长度定位,同时使用的是丝杆传导,所以精度问题可以保证(0.1mm以内),具体的PLC系统如图2所示;控制工艺流程如图3所示。 

3.2 轴向定位长度计算及控制
        新型的双轴伺服切管机与普通的切管机关键的部分就是轴向定位和切管长度控制及计算,新型切管机不需要平头来做切管的定位,而是只需要让伺服轴向往管方向走,等碰到了再进行长度定位,但是此方案需要高响应和一定的程序编程技巧,上面提到的外部中断进行脉冲切换是一个比较快又比较准的方案,通过图4-切管定位及计算,可以看到切管的长度分两部分组成:L1:刀头距,此距离可以进行机械调整,一般调整完以后不需要作大的修改;L2:补偿距离,此补偿距离就是根据实际切的管的长度需要作一个小的调整;所以切管长度L=L1+L2。以往旧的切管机L1就等于切管的长度,而且在空间上刀与头的位置的不变的,但是新的机器刀与头的位置是整体随轴在走的,这就是为什么新的机器可以一次送料多次切割的关键所在。

4  结束语
        轴承行业是加工密集型行业,所有的企业只关心一个问题:单机产量,评价一台机器的好坏,效率几乎是它的生命,而之前老式的切管机送一次料切一次管,效率自然不是很高,但是双轴切管机,完全可以做到送一次料连续切多次管,特别在切短圈的时候,送一次料可以切10次以上,那样的速度是以往的切管机无法比拟的。


        随着源材料价格的不断上升,同时轴承利润的不断下降,企业想要在每个环节节省成本,而以往的切管机由于送料部分有先天的缺陷:就是有送料不到位的问题存在,而以往的切管机恰恰是靠送料到位平头做定位的,那如果送不到位,切出来的圈就必然不合格,白白浪费材料不说,效率也下降,但是新型切管机切管的定位是伺服来做的,只有碰到管头了才会定位切割,即使料送不到位,它照样可以准确切割,只不过少切几个圈而已,但是不浪费材料也不影响效率。目前此机器已经成功开发完成,并且已经投入应用,并且得到了用户的高度认可。

1  引言
       传统的线缆裁切机跟随误差比较大,为了解决这个问题,利用台达20PM运动控制器的内置飞剪功能出色完成了各项需求,实现输送和裁切线速度同步,通过调整速度同步区的宽度来完成不同长度线缆的裁切,保证了裁切的度。


2  结构及工作原理
2.1 电缆切割机
        电缆切割机设备结构如图1、图2所示。线缆裁切设备这是比较典型的飞剪功能应用,台达20PM已内置飞剪功能,可采用以DVP-20PM为控制核心的台达机电产品整体解决方案完成对切刀控制,实现设备控制要求。

2.2 DVP20PM运动控制器
        台达DVP-20PM00D是一款具有运动控制专用功能的可编程控制器。DVP-20PM00D的大特点是PLC主机直接提供电子凸轮CAM功能,或者说DVP-20PM00D是内置CAM功能的PLC,所以有些场所直接称呼DVP-20PM00D为台达20PM运动控制器。


        20PM具有2路500KHz的输入与输出,在CAM功能中定义X轴为从轴,编码器输入轴为主轴,当定义好CAM Table后,从轴依据定义的曲线跟随主轴运动。采用高速双CPU结构形式,利用独立CPU处理运动控制算法,可以很好地实现各种运动轨迹控制、逻辑动作控制,直线/圆弧插补控制等,电缆切割机正是利用了20PM运动控制器的电子凸轮功能很好的解决了上述高速切割时出现的不等长等问题。20PM的主要特点:
(1)20PM适用于高速、高精度、高复杂的运动控制场合;
(2)多段速执行及中断定位;
(3)64K 大容量, 内置Flash存储体;
(5)两组差分脉冲输出,高脉冲输出达500KHz;
(6)两组手摇轮控制;
(7)内置电子凸轮CAM功能,轻松实现绕线、飞剪、追剪等应用;
(8)支持PLC顺序逻辑控制及NC控制(G 码与M码)。


3  切割机软件设计
3.1 I/O定义

X0计数光电
X1裁刀启动
X2裁刀停止
X3护保护
X4直流马达引起故障
X5伺服故障
X6主控箱急停

OITPUT
Y0伺服on
Y1故障复位
Y2裁切启动
Y3推线
Y4蜂鸣
Y5裁切指示灯

3.2 飞剪程序设计过程
在利用20Pm飞剪功能写程序的时候需要按照以下步骤来进行:

程序中需要计算填充数据D100-D112,其参数定义如下:
D101..D100主轴长度
D103..D102从轴长度
D105..D104从轴同步长度
D107..D106从轴同步倍率(F2/F1)
D109..D108从轴高倍率限制
D110加速曲线:
0 const speed,
1 const Acc,
2 SingleHypot,
3 Cycloid)
D111CAM曲线=0
0 leftCAM,
1 midCAMall,
2 midCAMbegin,
3 midCAMend)
程序中填充数据D100-D112其参数计算过程如下:
(1)D100计算:
D210裁切长度
D222计米轮周长
D212计米轮线数
D224实际计米轮总脉冲数
D226裁切长度脉冲数
D100=D226=D224=D210/D222*D212
(2)D102计算:
D416切刀轮脉冲x D426速比= D200切刀轮脉冲=(D102)
(3)D104计算:
D200切刀轮脉冲x D172同步范围= D204同步脉冲=(D104)
(4)D106倍率计算推导过程:
 
a.  主轴直径 D1 (mm)
主轴一圈脉波数R1 (Pulses/Rev)
主轴速度 F1(Hz)
主轴速度 V1(mm/sec)
b.  从轴直径 D2 (mm)
从轴一圈脉波数R2 (Pulses/Rev)
从轴速度 F2(Hz)
从轴速度 V2(mm/sec)
 
c:根据同步时线速度相同即
V1=V2
(F1*3.14*D1/R1) = (F2*3.14*D2/R2)
F2/F1 = (D1*R2*K减速比)/(D2*R1)
= (D250*D256*D258减速比)/( D252*D254)
=D274
=D106脉冲比同步倍率
(5)D108倍率上限
(6)D110加速曲线选择:
0-3曲线选择逐级平滑
(7)D111CAM曲线选择:
选择0保证了切刀切完后回到上位零点等待
8:D112结果ok
以上部分完成了D100-D112的计算填充数据过程,也就是完成了飞剪程序部分设计,
3.3 飞剪程序运行监控
D1799设定X 轴输入端子极性端子极性PG0
D1800输入点状态b5DOG原点信号来计数点 D50LDPm125无效
D1816=530原点回归 DOG 下降沿检测原点回归方向 A/B 相脉冲
D1828 X轴原点回归速度
D1830 X轴原点回归减速速度
D1832 X轴零点信号数N
D1833回原点后X轴补充距离P k0
D1838X轴目标位置(I) P(I) (Low word)
D1848X轴现在位置CP(PLS) (Low word)
D1864=H305 X轴手摇轮输入响应速度设定A/B相脉波4倍频
D1846=100 X单段速定位运动模式启动
D1846=40原点回归模式启动
D1846=2000插入单段速定位运动模式启动
经过上面的分析将分析过程写成程序即完成了主体程序设计,其它各种安全保护和附加功能同WPL程序编写就不一一赘述。

(2)将速度关系建立在位移关系图上, 在这里我们假设位置1在主轴位置100, 位置3在主轴位置200, 位置4在主轴位置300:

        在生成的位移关系图中横轴即是主轴(送料轴)回馈的脉冲量,纵轴即是从轴(切刀轴)运动脉冲量,主轴的位移量(脉冲数) 是裁切长度,在主轴运动过程中从轴(切刀轴)跟随一周,裁切一次。在速度关系图中我们可以看到,从轴与主轴之间有同步裁切区,保证了两者之间的速度同步。


        以上是飞剪功能介绍以及如何建立CAM关系图,在线缆裁切机中,主轴(送料)不由20PM控制,但其运动由计米轮编码器回馈给了20PM,因此也可以建立送料主轴与切刀从轴之间的运动关系。裁切曲线动态调整介绍CAM曲线可以做到程序中实时进行修改,裁切曲线动态调整是通过FROM/TO指令来完成,只要在裁切周期完成之前写入即可在下一个周期自动变换。在CAM曲线参数中提供了各种平滑曲线供选择,满足对加减速平滑的需求。

4  结束语
        基于台达20PM运动控制器的线缆定长切割设备已调试完成并正常运行,裁切重复精度达到客户工艺要求的±1mm以内。20PM飞剪功能成功应用于线缆裁切机。这是20PM飞剪功能的又一次成功应用案例,可广泛应用于各行各业的物料裁切等场合。


        DVP20PM是台达PLC家族中运动型控制器,具有强大的运算处理能力,可轻松完成各种二轴、三轴运动控制,特别适合对位置控制和实时响应有较高要求的高速定位应用场合,并内置高速绕线、飞剪、追剪等高阶应用功能,广泛应用于食品加工、包装、木工、机床、线缆切割等行业。


联系方式

  • 地址:上海松江 上海市松江区石湖荡镇塔汇路755弄29号1幢一层A区213室
  • 邮编:201600
  • 联系电话:未提供
  • 经理:聂航
  • 手机:15221406036
  • 微信:15221406036
  • QQ:3064686604
  • Email:3064686604@qq.com