全国服务热线 15221406036
单位新闻

滨州西门子S7-300代理商

发布时间: 2023-09-18 17:20 更新时间: 2024-05-08 07:10

滨州西门子S7-300代理商

一、目的
PROFIBUS作为一种广泛应用的现场总线标准,在控制系统中占有极其重要的地位。随着智能化调速器的不断发展,其同上位机之间的高速通讯也成为市场的迫切需求。虽然我们可以采用USS协议将PLC同SIEMENS调速器连接起来,但是对于大、中型控制系统,它的数据吞吐能力以及协议可靠性已经不能满足要求。因此采用PROFIBUS总线系统实现PLC同调速器的通讯连接,可以极大地提高我们控制系统的设计水平和产品档次。
二、硬件连接
1、CBP的安装
CBP为Master系列调速器的PROFIBUS接口板。先将电子箱中的主电子板取出,将LBA总线装入,再将主电子板插回。然后把CBP装在ADB适配板上,插入电子箱并固定。
2、PLC的安装
PLC安装方式如下图:

3、通讯线路的连接
PROFIBUS的硬件接口为D型九针插头。连接时可采用西门子提供的总线连接器,按下图接线,并在两端打开终端电阻开关。

三、参数设置
1、设置调速器参数
在硬件连接完毕后,需要对调速器的以下参数进行设置,以便CBP能够正常工作。
·   设置PPO类型
·   设置报文监控时间
·   设置CBP的PROFIBUS站点地址
·   设置CBP的参数使能状态
2、设置PLC参数
对CPU的DP接口进行参数设置,使其能够参数化CBP。
·   PPO
·   CBP站点地址
3、连接诊断
设置完成后,PLC及调速器送电,此时CBP上三个发光管同时闪亮,表示通讯正常。
四、程序编制
1、有关DVA-S7
DVA-S7是西门子公司为调速器同S7 PLC通讯所提供的S7软件包,它运行于PROFIBUS-DP之上,符合欧洲传动产品生产商有关变速传动在DP上应用的协定。它内含参数发送及接收的功能块,以方便编程者调用。
采用DVA-S7编制程序,主要组成部分为:DP-SEND(参数发送功能块),DP-RESV(参数接收功能块),过程参数数据块,通讯参数数据块。通讯功能块需要两个数据块,以便进行过程的参数化和提供通讯参数的存取空间。它们之间的关系如下图所示:

2、功能块DPS7-S
DPS7-S用于向调速器发送通讯数据。它根据PPO的类型以及通讯控制字的内容,自动形成有效数据,并将其送往DP接口。如果此功能块发现参数设置错误,则将错误代码写入过程数据块的两个字节中。
此功能块有三个形参:
DBPA: 通讯参数数据块代码
SYPA: 系统参数字在通讯参数数据块中的起始地址
SLPA: 有效数据在通讯参数数据块中的起始地址
3、功能块DPS7-R
DP-RESV用于接收调速器发送的通讯数据。它根据PPO的类型以及通讯控制字的内容,读入通讯设备的缓冲区数据,经过变换后,写入数据块。如果此功能块发现参数设置错误,则将错误代码写入过程数据块的一个字节中。
此功能块有三个形参:
DBPA: 通讯参数数据块代码
SYPA: 系统参数字在通讯参数数据块中的起始地址
SLPA: 有效数据在通讯参数数据块中的起始地址
对于上述两个数据块,在程序中至少每个调速器都要调用一次。
4、数据块
(1)通讯参数数据块(DBPA)
此数据块与参与通讯的调速器数目有关。每个调速器需要5个字,另外数据块本身有四个保留字。
(2)过程参数数据块(DBND)
此数据块为每一个参与通讯的调速器提供如下通讯接口:
·   同每个调速器相关的通讯数据
·   当前PKW任务的缓冲区
·   PPO有效数据的发送缓冲区
·   PPO有效数据的接收缓冲区
五、小结
我所已在多个工程项目中采用了用PROFIBUS构成传动控制系统,达到了非常满意的效果。采用这种方式,可以非常经济、有效地解决在传动系统中自动化信息的传递问题,是目前值得大力推广的系统解决方案

随着我国城乡建设的迅速发展,水、电供应不足的矛盾越来越成为人们关注的问题。例如,人们日常生活中的用水量越来越大,中的用水量的波动也越来越大。以往的供水系统中,水泵的选取往往是按大供水量来确定,而实际的用水量在不断变化。高峰用水时间较短,这样水泵在很长一段时间内有较大余量,不仅水泵效率低,供水压力不稳,而且造成大量电力、水资源的浪费;并且以往依靠手动操作控制泵的启动、停止,也已不能满足要求。这里,介绍一种变频控制的恒压供水系统,它既能解决人工操作的繁杂劳动和精神压力,又能节约能源[5]。  
  一、系统介绍
  该控制系统主要装置包括:可编程控制器(PLC)、变频器、压力传感器、PID控制器以及相关软件控制单元。该装置形成一套完整的、全自动的、智能的恒压供水控制系统,如图1所示。该系统能够以三种方式工作,分别为全自动、半自动和手动操作方式,其中后两种是在全自动方式出现故障时的弥补。
  

  

  图1 恒压供水系统简图
  2全自动恒压供水控制原理
  当主水管网压力传感器的压力信号4~20mA送给数字PID控制器,控制器根据压力设定值与实际检测值进行PID运算,并给出信号直接控制变频器的转速以使管网的压力稳定。当用水量不是很大时,一台泵在变频器的控制下稳定运行;当用水量大到变频器全速运行也不能保证管网的压力稳定时,控制器的压力下限信号与变频器的高速信号同时被PLC检测到,PLC自动将原工作在变频状态下的泵,投入到工频运行,以保持压力的连续性,同时将一台备用的泵用变频器起动后投入运行,以加大管网的供水量,保证压力稳定。若两台泵运转仍,则依次将变频工作状态下的泵投入到工频运行,而将另一台备用泵投入变频运行。当用水量减少时,首先表现为变频器已工作在低速信号有效,这时压力上限信号如仍出现,PLC首先将工频运行的泵停掉,以减少供水量。当上述两个信号仍存在时,PLC再停掉一台工频运行的电机,直到后一台泵用主频器恒压供水[4]。另外,控制系统设两台泵为一组,每台泵的电机累计运行时间可显示,24小时轮换一次,既保证供水系统有备用泵,又保证系统的泵有相同的运行时间,确保了泵的可靠寿命。
  
  二、系统原理图
  1.PLC系统原理图,如图2所示:
  

  

  图2 PLC系统原理图
  2.外部设备接线图,如图3所示:
  

  

  三、 恒压供水控制系统的编程
  本程序用富士专用的FLEX PLC编程器编译[1],利用梯形图清晰直观地展示各设备的运转状况等等。具体编程思想如下:
  首先选择利用FLEX PLC的输入继电器、输出继电器以及内部继电器,确定本设计方案所包括的仪器仪表。即一台富士NB系列PLC、两台7.5KW水泵、一台富士G11/P11变频器、一台压力传感器、一台SR90系列PID调节器、若干个空气开关、断路器、中间继电器等。根据PLC接线原理图(如图2所示),进行详细接线,并参考FUJI NB系列可编程控制器得参考手册,对PLC输入输出端子进行定义。
  部分梯形图
   PLC的恒压供水控制系统部分梯形图如下[2]:
  

  

  
  四、系统操作说明
  4.1自动控制
  1. 设定用户需要的目标压力值
  系统送电之后,控制柜面板上的电源指示灯点亮,其下方的温控表将会有显示:PV---.---、SV---.---。其中PV---.---表示水管网中的实测压力值,SV---.---表示用户需要的目标压力值.用户可按动▲、▼键使 SV---.--- 中的数字发生改变,直到显示用户需要的水管网的压力值时按下ENT键,结束目标压力值设定。
  2.选择需要开启的泵组
  自动/停/手动开关向左45度扳动一次时,泵组处于启动状态,系统将选择1号泵组启动;控制柜面板上的自动/停/手动开关扳到垂直位置时,四台泵组均处于停止状态。当将自动/停/手动开关再次向左45度扳动一次时,系统将选择2号泵启动;
  3.变频自动工作开始
  当系统检测到某台泵组的启动信号以后,便会使变频器开始升频工作,此时水管网中的压力开始上升,即PV---.---中的显示值开始上升,并不断趋向于用户设定的SV---.---中的目标压力值。当水管网中的压力和用户的设定的目标压力值相吻合(即PV---.---中的显示值和SV---.---中的显示值相吻合)时,变频器的输出频率便会稳定[3]。
  4.2自动控制中的部分功能
  1.自动切换至工频
  2.故障泵组自动退出运行
  3.定期倒换工作泵组
  五、恒压供水控制系统的优点
  1.采用变频恒压供水,消除了主管网压力波动,保证了供水质量,而且节能效果明显,并延长了主管网及其阀门的使用寿命。
    2.用稳压减压阀经济地解决了不同用水压力的问题。
    3.拓宽运用变频恒压控制原理,较好地解决了加压泵房与抽水泵房的远程通讯总是并达到异地连锁控制的目的。
    4.在抽水泵房设置连续液位显示,并将信号传与PLC,防止泵缺水烧坏电机,设定的取水位置,确保水的质量。
    5.电机既有电机保护器,又有软起动器,克服了起动时的大电流冲击,相对延长了电机制使用寿命。
    6.由于采用PLC控制的压力自动控制,可以实现无人远程操作,系统的PLC预留有RS485接口,可与公司总调度室计算机网络进行连接。
    7.通过采用变频器控制,可在不同季节、节假日、日夜及上下班等全面调控水量。

一、引言
  在各种机械设置上,PLC与变频器的应用可谓无处不在。常见的用法是使用模拟量模块(一般是电压)来对变频器进行控制。这种方法的主要的缺点是成本高,并且容易受干扰(电压方式),控制精度也很难作得很高,而采用通信方式就可以很好地避免这个问题。但是,一般PLC的通信编程是一件很不容易的事。本文介绍了V80系列PLC与变频器的通信方法。

二、V80 PLC介绍
  V80系列PLC是深圳德维森科技有限公司开发的一款通用型高性价比的小型可编程控制器(PLC),采用32位高性能CPU芯片和高速逻辑解析ASIC芯片,相对于一般的小型PLC,在通信应用方面具有以下特点:
  1、本机自带双串口,其中一个是232编程口,工作于MODBUS从模式,一般只用于编程和连接人机设备。另一个口为485接口,除了具有串口1所具有的功能外,还能工作于MODBUS主模式、自由通信模式,具有强大的通信功能。与一般的PLC相比,它不需要额外购买连接电缆和通信组件。
  2、具有48K的程序空间,9000个中间接点,9999个内部寄存器,加上极其强大的应用指令,能够方便地编写很复杂的程序,甚至是复杂的通信协议。
  3、V80 PLC的默认通信协议就是MODBUS从协议(RTU),甚至内部变量的编址方式也是按照协议进行的,所以在MODBUS通信的应用性上具有无可比拟的优势。对于不支持MODBUS协议的设备,则可以通过自由通信方式编写。

三、与兼容标准MODBUS RTU协议的变频通信
  对于采用MODBUS RTU从协议的设备,可以把V80PLC的串口2设置成MODBUS主的方式与其进行直接互连。下面以东元7200MA变频器为例,下面是引用其说明书上的一段文字:
东元7200MA变频器采用了MODBUS RTU从协议,它的通信数据格式描述如下:
  在MODBUS RTU 模式的通讯协议中,一个信息(Message)乃由4 个部份组成:Slave 地址、功能码、数据及CRC-16数据校验,并依序送出。每一个信息的开始与结束,皆以3.5个字符(Character)的间隔时间来做识别。


 
  对于V80系列PLC,上面的信息只是证明了它采用了部分MODBUS从协议(只支持03、10H这两种命令,也就是读写寄存器4XXXX命令),是可以与V80直接连接的,而具体的细节就不需要关心了,因为V80_PLC的M_BUS指令已经封装了这些数据过程。我们只关心如下参数:
  1、读写类型及设备地址。
  2、目标设备的寄存器(线圈)号,本地存放数据的寄存器(线圈)号,信息长度。
  3、通信间隔,也就是多久通信一次。
  4、一些通信参数,如波特率、奇偶校验位、通信超时时间等
根据这几项参数,用以下程序就可以实现与东元变频器的通信了。


 
  假设东元变频器上的设备地址为1,上图的程序完成了这样一种功能:把PLC内部41100~41115变量的内容,写到东元变频器寄存器区域偏移为00~015的连续16个寄存器里去,中间继电器01000每次从0变为1,双方通信一次。当然在之前要对PLC进行一下参数设置,具体可参见V80PLC的软件手册。

四、与其它协议的变频器通信
  对于不兼容标准MODBUS RTU协议的变频器,可以采用自由通信功能块实现。相对于M_BUS指令,自由通信的编程难度要大得多,但也灵活得多,大体上跟一些语言(如C语言)的编程思路差不多。用户好具有一定的通信编程的经验,并需要先准备好一些调试工具,如232->485转换器、串口监控软件等,因为影响通信的因素太多,有一些好的调试工具往往可以收到事倍工半的效果。
  下面以正弦SINE003系列变频器为例,说明V80PLC的自由通信协议编程方法。
  正弦SINE003系列变频器的通信格式如下:


 
  异或校验
  数据含义:数据帧从机地址至数据信息的异或结果。既第 2字节与第3字节异或的结果,再与第4字节异或,以此类推至第13字节。
  数据类型:16进制,单字节。
  发送方式:将校验和字节的高 4位和低4位拆分并转换为ASCII码,先高后低发送。
  结果处理:当校验结果小于等于 1FH,则校验结果加20H。
  它使用了ASCII码来表示传输内容,用STX(02H)、ETX(03H)作为开始和结束标志,也是一种比较典型的通信协议。使用前首先要把数据转换成ASCII码,V80PLC提供了ASCBIN及BINASC指令,来完成 “0~H”这十六个ASCII数字与十六进制码的互换。


 
  当发送脉冲产生时,各数据被换成ASC码并存放在发送缓冲区中,每个二进制码转换后占二个字。
  SINE003采用异或校验,只针对ASC码部分,这部分程序如下:


 
  实际上还有几个字节的异或指令没列出来,然后对异或结果进行判断,小于1FH则加20H,之后可以用字组拆分指令“PACK”把它拆成两个字节,按先高后低填到发送区,这部分比较简单,不再单独列出,下面是发送和接收程序。


 
  发送程序比较简单,只需填一个发送长度即可,而接收的情况则要复杂一点(图里没有体现出来)。在发送的同时就打开接收,使能开始字符和结束字符(通过设置控制位,这里没画出来),并把开始字符和结束字符填好,还有一些超时时间之类的设置(有兴趣的可以参见V80PLC的软件手册),这样当接收到“02H”就认为是一帧的开始,接收到“03H”就认为是一帧的结束,当然也可以结合其它条件,如字符超时等,各种状态都可以在状态位里体现。
  接收到完整的一帧后,状态位里会有指示,然后把接收回来的数据进行校验,并重新转换成十六进制,就可以进行各种处理了。

五、结束语
  采用V80系列PLC与变频器通信的方案,可以大大地节省成本,并带来更高的可靠性。

 电梯运行的舒适性取决于其运行过程中加速度a和加速度变化率p的大小,过大的加速度或加速度变化率会造成乘客的不适感。同时,为保证电梯的运行效率,a、p的值不宜过小。能保证a、p佳取值的电梯运行曲线称为电梯的理想运行曲线。电梯运行的理想曲线(图1) 应是抛物线-直线综合速度曲线,即电梯的加、减过程由抛物线和直线构成。电梯给定曲线是否理想,直接影响实际的运行曲线。


一、东洋电梯速度曲线的产生方法
    东洋电梯采用的方法是阶梯-滤波方式,和一般电梯的起、制动方式一样,起动受时间控制(称为时间原则),制动受距离控制(称为距离原则)。先通过电阻分压产生阶梯给定电压U,阶梯电压的顺序由继电器的触点控制。每一阶梯的保持时间,就是对应继电器常开触点吸合的时间,这一时间由延时电路实现。制动过程由对应减速距离的选层器凸轮触点和门区内的磁感应开关控制。起动过程分12级,制动过程为13级。这是为了在起动时有足够的起动转矩,而将级给定电压设置得较高。制动时,为保证平层精度,后一级要小一些。阶梯电压产生后,送到滤波电路,经滤波输出后,产生平滑的速度给定曲线。
    采用硬件电路实现的速度曲线产生方法,由于采用继电器逻辑控制,不仅可靠性不理想,而且存在下述问题:(1)受分级电压级数的限制,不易使曲线达到理想;(2)调试困难;(3)加速过程采用由小到大的阶梯给定顺序,引起电梯起动时的冲击。这一问题是由于在电梯起动瞬间克服了机械静磨擦力后,给定电压没能随磨擦力的减小而及时降低造成。此外,在减速过程中,轿厢位置信号取自机械选层器,减速点及每级减速距离的精度也受到限制。
二、速度曲线产生方法的改造
    本方法是利用PLC扩展功能模块-D/A模块实现的,事先将数字化的理想速度曲线存入PLC寄存器,程序运行时,通过查表方式写入D/A,由D/A转换成模拟量后将理想曲线输出。本文选用的富士可编程控制器FLEX-PC的NB-AXY4-11型模拟输入输出模块,分别有两路8位A/D和D/A。
1.加速给定曲线的产生
    8位D/A输出0~5V/0~10V,对应数字值为16进制数00~FF,共255级。东洋电梯加速实践在2.5~3秒之间。按保守值计算,电梯加速过程中每次查表的时间间隔不宜超过10ms。
    由于电梯逻辑控制部分程序大,而PLC运行采用周期扫描机制,因而采用通常的查表方法,每次查表的指令时间间隔过长,不能满足给定曲线的精度要求。在PLC运行过程中,其CPU与各设备之间的信息交换、用户程序的执行、信号采集、控制量的输出等操作都是按照固定的顺序以循环扫描的方式进行的,每个循环都要对所有功能进行查询、判断和操作。这种顺序和格式不能人为改变。通常一个扫描周期,基本要完成六个步骤的工作,包括运行监视、与编程器交换信息、与数字处理器交换信息、与通讯处理器交换信息、执行用户程序和输入输出接口服务等。在一个周期内,CPU对整个用户程序只执行一遍。这种机制有其方便的一面,但实时性差。过长的扫描时间,直接影响系统对信号响应的效果,在保证控制功能的前提下,大限度地缩短CPU的周期扫描时间是一个很复杂的问题。一般只能从用户程序执行时间短采取方法。电梯逻辑控制部分的程序扫描时间已超过10ms,尽管采取了一些减少程序扫描时间的办法,但仍无法将扫描时间降到10ms以下。同时,制动段曲线采用按距离原则,每段距离到的响应时间也不宜超过10ms。为满足系统的实时性要求,本文在速度曲线的产生方式中,采用中断方法,从而有效地克服了PLC扫描机制的限制。
    本文采用的NBI-P56PLC有三种中断功能:(1)外部中断;(2)高速计数内部中断;(3)定周期中断。前两种中断各有8个中断点,后一种有4个中断点。在程序中采用了后面两种中断方式。起动过程采用定周期中断,制动过程采用高速计数内部中断。中断服务程序放在主程序后,运行状态检测、运行保护、内选外呼等逻辑控制均在主程序中实现。而运行条件的判断、运行模式的选择、查表等与运行曲线产生有关的程序放在中断服务程序中。
    起动加速运行由定周期中断服务程序完成。这种中断不能由程序进行开关,一旦设定,就一直按设定时间间隔循环中断,所以,起动运行条件需放在中断服务程序中,在不满足运行条件时,中断即返回。
    高速计数中断可由相应的内部继电器进行开关,因而运行条件判别可放在主程序中,当运行条件满足时,将相应中断打开。本课题采用0号计数器,对应现行值地址D0000,设定值地址D0008,现在值预置数据地址D0010,设定值预置继电器M326,现在值预置继电器M327,中断指示器为I1100,中断接受EI/DI继电器M0323。程序框图如图2  所示。


2.减速制动曲线的产生
    为保证制动过程的完成,需在主程序中进行制动条件判断和减速点确定。在减速点确定之前,电梯一直处于加速或稳速运行过程中。加速过程由固定周期中断完成,加速到对应模式的大值之后,加速程序运行条件不再满足,每次中断后,不再执行加速程序,直接从中断返回。电梯以对应模式的大值运行,在该模式减速点到后,产生高速计数中断,执行减速服务程序。在该中断服务程序中修改计数器设定值的条件,保证下次中断执行。采用D/A方法的减速程序框图如图3  所示。


    在PLC的内部寄存器中,减速曲线表的数值由大到小排列,每次中断都执行一次“表指针加1”操作,则下一次中断的查表值将小于本次中断的查表值。门区和平层区的判断均由外部信号给出,以保证减速过程的可靠性。
三、结论
    采用PLC软件控制产生电梯速度给定曲线的方法,可简化硬件系统、提高可靠性、减少故障率,并能改善舒适性、提高平层精度。用PLC实现数字方法产生电梯速度给定曲线时,应用中断技术,可较好地克服PLC扫描运行机制对速度曲线的影响,提高实时性


联系方式

  • 地址:上海松江 上海市松江区石湖荡镇塔汇路755弄29号1幢一层A区213室
  • 邮编:201600
  • 联系电话:未提供
  • 经理:聂航
  • 手机:15221406036
  • 微信:15221406036
  • QQ:3064686604
  • Email:3064686604@qq.com