全国服务热线 15221406036

鹤岗西门子S7-300代理商

发布:2023-09-13 15:36,更新:2024-05-08 07:10

鹤岗西门子S7-300代理商

1. 概述
    气举采油是将地面压缩机提供的高压天然气注入井中,从而降低液柱密度,减小井筒回压,使油井恢复自喷。其生产过程主要是依靠高压气提供的能量来完成,所以地面压缩机组、地面配气管网及油井配气决定了高压气能量的利用率和举升效率。
    对于气举井注入气的控制与计量调节,气举采油普遍采用的方法是角阀手动完成或恒气量气嘴控制方式。但却存在着手动调节误差大、注气计量不准确、注气量控制不稳、无法实现系统管理、容易造成系统波动等问题,使气举井在注气方式、注气量优化方面存在的潜力得不到发挥,严重制约了气举采油举升效率的tigao。
    2. 系统设计
    2.1. 系统分析
    平稳供气是对气举压缩机组、气举井生产管理的基本要求。长期以来,面对突发、短期停机现象,只能采用手动关井,这种方法执行速度慢,避免不了气举系统压力的波动,不能将系统波动对气举井正常生产的影响降到低。为此,将注气采油站作如下自控设计:  
     
  
    SunyPLC250小型可编程逻辑控制器接收现场仪表测量的工艺参数,按照既定控制方案和人工设置进行处理,然后将结果输送到各气举井调节阀。同时,SunyPLC250经Modbus RTU通讯将有关参数传送给SunyHMI200人机界面进行显示,操作人员可以进行监视和操作。另外,SunyPLC250还通过GPRS将有关参数传送给油田总部,使处于远程的管理人员足不出户即可对生产情况了如指掌。
    2.2. 系统配置
    由于不同站点的气举井数量不同,因此,现场仪表和SunyPLC250的配置也不尽相同。但就控制产品种类来讲,主要包括以下内容: 
     
  
    3. 控制方案
    油田油井具有数量多、分布广、产量不一的特点,一般按地理分布对附近的油井进行相对集中的管理和控制。由于不同井群的状况不一、现场条件不同,所以,在进行控制方案的设计时采取了平稳供气、间歇气举、优化控制或者三者相结合的方法。
    3.1. 平稳供气
    在供气系统处于平稳状态时,以配气站干线压力为压力调控设定参考值,与设定的下限值相比较。当高于设定值时,SunyPLC250按正常的liuliang调节分别对每口气举井进行控制。当低于设定值时,SunyPLC250将在liuliang调节的前提下向执行机构发出附加信号。这样,通过控制调节阀的开启度,达到控制气举井注气量和注气压力的目的。
    3.2. 间歇气举
    间歇气举一般用于产能较低的油井中,具有明显节约注气量的优点。其原理是按照设计的注气周期和注气时间,将高压气定期注入油井中,气体注入油管后,以气柱柱塞的形式驱替举升液柱段塞。下图所示为间歇气举控制框图。 
 

    3.3. 优化控制
    由于受地面压缩机供气量的限制,当气量不足时,部分气举井被迫停井,严重影响气举井的正常生产。为此,设计了优化控制方案:按照各井的产能将其分别归类,划分出不同的优先级。在干线供气量不足时,SunyPLC250能够自动按优先级作出反应,关闭低产井,保证高产井的正常生产。
    利用SunyPLC250编程软件SunyPRG提供的符合IEC61131-3标准的编程语言可以方便地实现该功能。下图为FBD组态图。 
      
    4. 系统功能
    4.1. 显示功能
     所有参数经转换、调理,以工程量在SunyHMI200上进行显示和记录。
     工况liuliang(m3/h)经温压补偿运算,得到标况liuliang(Nm3/h)。
     累积功能还可以将各井的气体liuliang分别按天、月、年进行积算。
    4.2. 调控功能
     以数值、棒图、曲线等形式连续显示所有工艺参数,帮助工人判断工作状况、管柱漏失状况以及生产中出现的问题,结合产量、流压资料及时调整注气量。
     根据不同的井群实施不同的控制方案,使产能优化。
     密码保护功能使不同权限有不同的管理、操作和监视职能。
    4.3. 管理功能
     通过GPRS通讯,可以在总部显示记录所有过程参数。
     通过对干线压力曲线的追忆,掌握近期气举供气系统的平稳程度情况,从而当气举系统产量发生较大变化时,便于分析、查找问题。
     在控制器中可以通过对气举井的注气压力、注气量生产动态曲线的追忆,了解气举井的工作状况,发现问题及时处理。
    5. 应用效果
    气举采油配气自控系统先后在105口气举井上获得应用,取得了明显的经济效益。运行一年的统计数据显示:
     气举系统波动率下降了49.5%,减少因波动而造成的检阀22井次,减少气举井降产702.2t。
     应用间歇气举11井次,累计节气751,360m3。
     利用优化注气量350井次,累计节气4,244,540m3。
     大大降低了维修劳动,全年仅检阀6井次,重新排液5井次,调整注气16井次,注气管线解堵6井次。
     增产原油1040.8t,减少作业8井次。
    本系统的投用使供气波动对气举系统产量的影响降低到了小,保证了大部分气举井(特别是高产井)的正常生产,解决了长期困扰气举供气系统波动频繁给油田生产带来的难题,投入产出比达1:3.1,经济效益非常可观。该技术不仅在气举采油方面具有深远的意义,在油田注水乃至其它领域也具有广泛的借鉴意义。

日常的生活用水量随季节、昼夜、上下班的时间不同而有较大变化,因而经常出现供水用水的不平衡,主要表现在水压上,用水多而供水少则水压低,用水少而供水多则水压高。某住宅区由于自来水管网的水压较低,自来水通常不能到达住宅的较高楼层。传统的供水方式利用蓄水池蓄水,用水泵再次将水送至楼顶的高位水箱,再供应给用户。蓄水池中的水一般是由市政自来水管网供给,这样,有压力的水进入水池后变成了零压力,造成大量的能源白白浪费,这种供水方式不可避免通过蓄水池和高位水箱造成二次污染,影响居民的身体健康。但是为保证小区的供水正常,我们利用PLC,配以稳流罐、负压消除器和不同功能的传感器等,根据网管的压力,通过变频器控制水泵的转速,使水管中的压力始终保持在合适的范围。这种变频恒压供水系统直接取代水塔、高位水箱及传统的气压罐供水装置。不对市政供水管网产生负压,适用于一切需要增高水压、恒定liuliang的给水系统。另外水泵耗电功率与电机转速的三次方成正比关系,所以水泵调速运行的节能效果非常明显,平均耗电量较通常供水方式节省40%。结合使用可编程序控制器,可实现循环变频,电机软启动,具有短路保护、过流保护功能,工作稳定可靠,大大延长了设备的使用寿命。

  1 系统设计

  (1)原理

  系统采用2~3台水泵并联运行方式,压力传感器将主水管网水压变换为电信号,经模拟量输入模块输入PLC,PLC根据给定的压力设定值与实际检测值进行PID运算,输出控制信号经模拟量输出模块至变频器,调节水泵电机的供电电压和频率。当用水量较小时,一台泵在变频器的控制下稳定运行,当用水量大到水泵全速运行也不能保证管网的压力稳定时,PLC给定的压力下限信号与变频器的高速信号同时被PLC检测到,PLC自动将原工作在变频状态下的泵投入到工频运行,以保持压力的连续性,同时将下一台备用泵用变频器起动后投入运行,以加大管网的供水量保证压力稳定。若2台泵运转仍不能满足压力的要求,则依次将变频工作状态下的泵投入到工频运行,再将一台备用泵投入变频运行。当用水量减少时,首先表现为变频器已工作在低速信号有效,这时压力上限信号如仍出现,PLC首先将先工频运行的泵停掉,以减少供水量。当上述2个信号仍存在时,PLC再停掉第2台工频运行的电机,直到后一台泵用变频器恒压供水。

  所有水泵电机从停止到启动及从启动到停止都由变频器来控制,实现带载软启动,避免了启动大电流给水泵电机带来冲击,相对延长了电机的使用寿命。同时,系统供水采用变频泵循环方式,以“先开先关”的顺序关泵,工作泵与备用泵不固定,这样,既保证供水系统有备用泵,又保证系统泵有相同的运行时间,有效地防止因为备用泵长期不用发生锈死现象,tigao了设备的综合利用率,降低了维护费用。

  (2)系统硬件

  系统选用了西门子公司的S7-200 (CPU224XP CN )PLC,主要检测元件有水位检测、执行继电器状态等,共计14个输入信号。执行部件有电机、变频调速器、声光报警器等,共10个输出点。模拟量检测有压力检测、变频器运行频率检测和压力比对检测,共2个输入、1个输出量。PLC主要完成现场的数据采集、转换、存储、报警、控制变频器完成压力调节等功能。水泵分别由变频器软起动,旁路工频运行,进行恒压控制,变频器的起动、停止分为使用触摸屏或文本显示器等设备软控制和PLC自动控制。控制面板上设有一个手动/自动转换开关,PLC对该开关的状态实时检测,当选择手动功能时,PLC只进行检测报警,由人工通过面板上的按钮和开关进行水泵的工频起、停。当选择自动功能时,所有控制、报警均由PLC完成。系统原理图如图1所示。

  2 系统软件

  为方便调试和编程,系统控制器采用模块化编程,主要由手动运行模块、自动运行模块和故障诊断与报警模块组成。

  (1)手动运行模块

  当系统处于手动运行时,PLC只接收各电路保护信号和各传感器信号,并由此判断各工作水泵的运行状态,在出现故障的情况下,输出报警信号。水泵的起、停和切换由人工通过面板上的按钮和开关来实现。

  (2)自动运行模块

  图2 自动运行模块流程图

  自动运行模块包括系统的初始化、开机命令的检测、数据采集子程序、控制量运算子程序、置初值子程序、电机控制子程序等。自动运行模块流程图如图2所示。其中:数据采集子程序完成对主水管压力的数据采集。

  控制量运算子程序完成变频器控制量的计算和控制量的输出,其中控制量的计算按PID控制规律进行。 

  电机控制子程序完成对3台水泵的运行和停止控制。由于变频器的输出频率与水泵的运转速度直接相关,用水量大时,变频器输出频率升高,水泵的运转速度大;用水量小时,频率降低,水泵的运转速度小。因此程序根据变频器的输出频率的大小就可以判断和控制水泵的工作状态。当频率上升到50 Hz(即水泵全速运转)时仍不能满足供水需要时,则PLC自动将台泵切换到工频运行;第2台泵由变频器供电投入运行,如果第2台泵电机达到满转速时仍不能满足供水要求,则PLC自动将第2台泵切换到工频运行,第3台泵由变频器供电投入运行,依此规律逐个投入运行;当2台泵都处于工频全速运行方式,第3台泵处于变频运行工作方式时,如果此时用水量减小,变频器输出频率下降,当频率到达一定的下限Fmin(设定变频器频率下限)时,供水量仍大于用水量,则系统自动将第三台泵停止运行。同样,第三台泵停机后,如果此时供水量还大于用水量,则系统自动将第二台泵停止运行,依此类推。电机控制子程序功能图如图3所示。

  (3)故障诊断和报警输出模块

  变频器具有短路、过载等保护功能,当变频器所驱动的水泵电机发生短路、过载等故障时,变频器将自动切断一次供电回路,进入保护状态并输出报警信号。系统把各故障点相应的接触器、断路器等元件的辅助触点接到PLC,PLC扫描输入这些触点的状态,并通过PLC程序将这些状态存放在数据存储区,再结合控制程序和设备预置状态进行逻辑分析,判断设备或元件是否出了故障,如果发生故障,则切断该泵的接触器,然后对变频器复位,再将备用水泵的接触器接通,启动变频器运行备用泵,同时输出该泵故障报警信号。如电机故障指示灯亮等。

  3 结语

  变频调速恒压供水系统具有节能、安全、高品质的供水质量等优点。采用PLC作为控制器,硬件结构简单,成本低,系统实现水泵电机无级调速,依据用水量的变化自动调节系统的运行参数,在用水量发生变化时保持水压恒定以满足用水要求。另外,S7-200(CPU224XP CN )PLC基本单元提供二个RS-485接口,一个与触摸屏或文本显示器(系统参数显示、设定、系统运行软控制设备)等设备通讯控制,另一个可以与楼宇监控中心进行通讯,实现无人远程控制。 



联系方式

  • 地址:上海松江 上海市松江区石湖荡镇塔汇路755弄29号1幢一层A区213室
  • 邮编:201600
  • 联系电话:未提供
  • 经理:聂航
  • 手机:15221406036
  • 微信:15221406036
  • QQ:3064686604
  • Email:3064686604@qq.com