浔之漫智控技术-西门子PLC代理商
西门子PLC模块 , 变频器 , 触摸屏 , 交换机
6ES7222-1EF22-0XA0参数选型

6ES7222-1EF22-0XA0参数选型

1 前言

  随着科学技术的发展及制造技术的进步,社会对产品多样化的需求越来越强烈,产品的更新换代周期也越来越短,中小批量生产的比重明显增加,从而对制造设备提出了更高的要求。为满足市场的需要,要求制造设备具有高效率、高质量、高柔性及低成本的性能,数控机床作为一种自动化的加工设备而被广泛采用。同时,随着现代机械制造业向更高层次的发展,数控机床也必将成为柔性制造单元(FMC)、柔性制造系统(FMS)以及计算机集成制造系统(CIMS)的基础装备。计算机数控系统作为制造形状复杂、高质量、高精度产品所必备的基础设备,己成为当今先进制造技术的一个重要组成部分。

  PLC(Programmable Logic Controller)可编程逻辑控制器是20世纪60年代末期逐步发展起来的一种以计算机技术为基础的新型工业控制装置。PLC作为计算机技术应用于工业控制领域的崭新产品,也是开放式数控系统中不可缺少的重要组成部分。它在处理开关量的控制问题时起着重要作用。现代先进的数控机床一般可分为机床床体(MT)、NC和PLC三部分。数控机床中NC和PLC协调配合共同完成对数控机床的控制,其中NC主要完成管理调度及轨迹控制等“数字控制”工作,PLC主要完成与逻辑有关的一些动作,如刀具的更换、工件的夹紧及冷却液润滑液的开停。PLC技术在各种工业过程控制、生产自动线控制中得到极为广泛的应用,成为工业自动化领域中的一项十分重要的应用技术。

  在数控机床上有两类控制信息:一类是控制机床进给运动坐标轴的位置信息,如数控机床工作台的前、后、左、右移动;主轴箱的上、下移动和围绕某一直线轴的旋转运动位移量等。这些控制是用插补计算出的理论位置与实际反馈位置比较后得到的差值,对伺服进给电机进行控制而实现的。这种控制的核心作用就是保证实现加工零件的轮廓轨迹,除点位加工外,各个轴的运动之间随时随刻都必须保持严格的比例关系。这类数字信息是由CNC系统(专用计算机)进行处理的,即“数字控制”。另一类是数控机床运行过程中,以CNC系统内部和机床上各行程开关、传感器、按钮、继电器等开关量信号的状态为条件,并按照预先规定的逻辑顺序,对诸如主轴的开停、换向,刀具的更换,工件的夹紧、松开,液压、冷却、润滑系系统的运行控制。这一类控制信息主要是开关量信号的顺序控制,一般由 PLC来完成。

2 精密切割数控机床的功能分析

  精密切割数控机床是通过数控系统以数字方式控制刀具的运动以实现对工件的切削,在编写数控车削加工程序时,并不考虑刀具。在加工前,用户必须将刀具的 X轴补偿量、Z轴补偿量、刀尖圆弧半径、刀尖形式共四种补偿参数输入数控系统,由数控系统根据程序,进行补偿运算。这四种参数中,刀尖形式按数控系统的规定予以确认,刀尖圆弧半径可由R规测量,而刀具的X,Z轴补偿量的测量则相对困难一些,使用自动对刀仪能很好地解决这个问题,为此,数控机床及加工中心大多配置了各种不同类型的对刀装置,如机外对刀仪、机内光学对刀仪、接触式自动对刀装置等。由于车削中心对一般的数控车床刀具夹持标准化程度不高,因此采用机外对刀仪的对刀精度相对较低,而且专用机外对刀仪成本较高,操作复杂,需要专门的操作空间,所以实用性较差。而采用机内接触式自动对刀装置无疑是一种简便、快捷的对刀方法,它能方便地自动测量刀具的固定刀补值,大大减少对刀时间,提高机床的加工效率。所以本文旨在设计一种机内接触式的数控车床,实现数控车削前的精密对刀,提高生产率,降低加工成本。需要解决的问题主要有以下方面:自动对刀仪需有高精度的电子测头(传感器),能够准确在触发点触发,有较快的反映时间;对刀仪的测头与刀尖刚性接触,需加缓冲装置,对测头表面保护,压力需控制在1~10MPa左右,这样才不会对传感器的测头造成损坏,形成凹坑;系统能利用机床本身的位置测量装置进行测量,通过对不同刀尖触发点坐标(X,Z)的记录,可以方便地得到一组坐标值,分析计算后便可确定各刀刀补值; 安装和固定对刀仪的装置(联接臂)应达到相应精度要求,满足平行度与垂直度要求,且要有较好的刚度和易操作性。

3 精密切割数控机床总体设计

  对精密切割的功能,主要需保证刀具切割精度,因此要求对数据机床的主要部件一一传感器的精度得到保证,传感器的作用是感知和检测某一形态的信息,并将其转换成另一形态的信息,将被测量(刀尖位置这个物理量)按照一定的规律转换成可用输出信号(电流、电压)表示的物理量。 精密切割的数控机床传感器由以下几部分组成:



图 一:数控机床传感器组成

  在本文中,传感器的选用应有相当的精度,完成以下功能:1)、实现对X轴和Z轴两个方向的传感,对刀仪要得到X轴和Z轴的坐标值,必须使不同刀具在相同的点触发传感器,进而运用机床数控系统的功能再结合编程实现该点坐标值的获取。实际上传感器要完成的功能是一个开关量,不同的刀具在相同点触发即可。 2)、由于刀具偏角的不同,传感器不能做成X轴向和Z轴向相互垂直的两对传感器,这样对Z向坐标的时候,得到的刀尖点可能不是真实的刀尖点坐标。

  本文采用的是机械式开关传感器,用机械触发的方式得到一个开关量的输出,当刀尖与传感器触发并行进到预设位置时,电路接通得到触发信号。机械式传感器相对来说精度是差一些,但只要设计合理,也能将误差控制在合理的范围内。另一方面,可自行设计以兼顾刀具刀偏角的不同和传感器的大小及联接方式。此种传感器简单适用,成本较低,具有很大的市场推广价值。

4 PLC与数控系统编程

  NUM1020/1040数控系统是NUM于1995年开发出的全新数控系统,是紧凑且功能完善的32位数控系统,并且和NUM1060系列系统完全兼容。它特别适合于1~6轴的数控机床,其硬件特点如下:采用CISC( 超大规模集成电路)技术的GSP主板;主板上连接可插接(分离的)小模板,由于考虑到数控系统和系统外部的联系,NUM把和外界联系的功能模块制造成可插接小模块,便于用户将来的维护。具体分为轴模块、显示模块和通讯模块;NUM1020/1040采用+24VDC为其电源输入,由于数控系统是弱电电路,采用+24VDC为电源输入,可以大大降低其热源和不稳定因素的影响。用户可以把+24VDC稳压电源放在电气柜内,大大提高了整个数控系统的可靠性;PLC功能的内部集成,PLC功能的内部集成化,提高了PLC和 CNC的内部通讯能力,增强了数控机床的逻辑控制;PLC的32输入和24输出模块,NUM的32输入和24输出模块可以和外围的电路相连接,而这种模块通过NUM提供的电缆和NUM数控系统连接,提高了整个机床的可靠性。(如果有问题,只能损坏这种模块,不会对数控系统造成损坏);光纤技术的通讯,PLC输入输出点的扩展,通过光纤进行连接,简化了线路的连接;轴转接模块,机床的编码器和到伺服的线路可以直接联到此模块上,并通过它和数控系统的轴板进行连接,提高了数控系统的可靠性。另外,NU M的轴连接和其它数控系统不同,NUM的轴模块连接此轴的所有信息(如编码器、速度信号、回零开关)。如果机床的轴有问题,可以直接把轴模块上的插头相对换,就能很快地查出问题所在(系统内部或外部);轻巧实用的紧凑型操作面板。其上显示器和计算机的CRT有可兼容性,与NC相通的功能键共有47个,有6个用户自由定义键及串行通讯接口,可以连接PC的键盘(直接插拔)。

  按照设计要求,当传感器检测到信号时,数控系统的程序并未监控,此时是不能记录刀尖坐标值进行数据处理的。必须先使进给电机停下来,等候操作者发出指令,然后进行下一步的操作。所以应该通过PLC的控制来实现这一功能,将Q001.0和Q001.1两个端子分别与两两个进给电机相连,实现单独控制。其次,传感器共有四个测头,但对进给电机的控制都是一样的:任何一个传感器得到信号都必须使相应的电机同时停下来,然后进行相应的数据处理。

  数控机床的传感器得信号后通过接口电路传给PLC,PLC将得到的信号通过交换区与CNC进行数据的传输,CNC将信息运算处理后再传递到PLC中,PLC控制X向电机和Z向电机运动。数控系统与传感器的接口电路如图2所示:

  如图所示为PLC的接线示意图,将%I001.0、%I001.1、%I001.2、%I001.3 四个输入口分别与四个传感器相连,然后再与 COM口连接。传感器得到信号后,相当于开关闭合,由原先的+24VDC电压跳变为零,从而给PLC的相应的输入端口一个信号。输出口%Q001.0控制 X方向进给电机的使能,%Q001.1控制Y方向进给电机的使能。



图 二 :数控机床接口电路

  NUM1060CNC是一种多功能、多处理器的系统,它提供与数控机床连接的各种自动控制功能。用梯形图语言编制的自动控制功能包括安装在机床上的传感器和执行机械以及与CNC的数据交换。自动控制功能设置在中央处理单元之中,它包括一块或多块功能卡,CNC通过它们实现图形显示,自动控制和信息存储功能。CPU与系统的数据交换可以分为二种类型:通过交换区的通讯和通过协议的通讯。

  自动控制功能由一个监督程序进行管理,它包括处理初始化,将输入/输出点分配到不同的框架以及输人输出接口和监视器的管理等多种基本任务。监控程序与用户程序一起对系统进行整体的监督管理。用户程序是在监督程序控制下受一个20ms周期的实时时钟(RTC)支配循环运行的。

  机床处理器的存储器空间安排如下:

  (1) 有备份功能(掉电保持)的32K静态RAM。

  (2) 在电源接通是复位(清零)的32K动态RAM。

  (3) 机床处理器(1MB V1)的用户程序使用的180KB动态RAM。

  (3) 机床处理器(4MB V1)的用户程序使用的2.5MB动态RAM。

  (3) 机床处理器(4MB V2)的用户程序使用的3.5MB动态RAM。

  (6) UCSII模块上的用户程序使用的64KB动态RAM。

  自动控制功能如下:

  (1) 对DACs(12位)直接存取。

  (2) 对ADCs和输入/输出点间接读和写存取,这种存取是经由虚拟存储空间(每20ms刷新)实现的。

5 创新点总结

  本文的创新点是针对数控车床对刀具jingque切割中,对刀时间长、精度差这一问题,设计了精密切割数控车床,通过对刀尖位置的jingque捕捉运用NUM数控系统自身的测量装置得到了刀尖点的坐标,经过计算将不同刀具相对于标准刀的位置偏差得出并再存入数控系统,实现了自动对刀,有效地提高了对刀的效率和精度,具有可推广性。可为生产效率的提高,制造成本的降低起到积极的作用

 前言

当车辆驱动电机采用分散驱动时, 受电机转速不同步的影响, 可导致车体运行不协调, 进而使电机转速偏离正常值, 严重时会造成设备损坏。因此,解决车辆驱动电机在分散驱动时产生的电机转速不同步问题具有现实意义。
本文介绍一种利用PLC 解决车辆分散驱动时电机速度同步的先进实用的控制方法。

2 问题的提出

目前, 车辆的运行设备一般采用集中驱动( 见图1) 和分散驱动( 见图2) 两种方式。集中驱动变频器与电机的关系是“一拖多”; 分散驱动时两者的关系是“一拖一”。



“一拖多”的优点是控制简单, 操作维护方便,但采用集中驱动布置, 要求车体具备较大的空间。当车辆负载很大或者车体空间受到限制的时候, 通常采用“一拖一”的分散驱动方式, 因为其结构紧凑,布局简单。但"一拖一"对变频器和电机有较高的要求, 特别是同步问题难以解决。如果电机转速不一致, 会出现变频器相对逆向做功, 输出电流过大导致跳闸, 影响车辆的工作效率和电气设备的使用寿命。如果转速偏差过大, 则导致车体变形, 影响使用。

3 解决方法

采用PLC 与变频器控制方法, 实现多个分散驱动电机同步运行。PLC 采用西门子S7400 系列, 图3为网络拓扑图。


为实现两台牵引电机的速度同步, 采用两台变频电机牵引, 并分别采用变频器调速进行矢量闭环控制, 用PLC直接控制两台变频器。在控制中, PLC与变频器之间采用Profibus 联接, 保证输出信号源的同步性。以牵引电机1 的速度为目标速度, 由牵引电机2 的变频器来调节其速度以跟踪牵引电机1的速度。将两台增量式旋转编码器与电机同轴联接, 使编码器1 和编码器2 分别采集两台电机的速度脉冲信号, 并将该信号送到PLC 的高速计数模块中。PLC 以这两个速度信号数据作为输入控制量,进行比例积分控制运算( PID) , 运算结果作为输出信号送至PLC 的模拟量模块, 以控制牵引电机2 的变频器。这样, 就可以保证牵引电机2 的速度跟踪并随着牵引电机1 速度的变化而发生变化。使两个速度保持同步。
取自编码器采集的脉冲信号, 经高速计数模块FM350- 1 进入PLC, 转换成电机速度数据。将两个电机编码器的信号相比较, 通过PID 调节模块, 调整电机转速差值, 给定电机2 的转速值MW1000。
MW1000 需要转化成变频器能接受的信号。由于PLC的对应4~20mA 值为0~27648, 变频器接收范围值为0~8192, 所以MW1000/27648×8192 送到模拟量输出通道, 换算成变频器能接受的电流信号, 以控制牵引电机2 的变频器, PID 算法是工业控制中常用的一种数学算法, 其基本算式如下:
Pou (t t) =Kp×(et) +Ki×Σ(et) +Kd×[ (et) - (et- 1) ]
式中:Kp—比例调节系数。是按比例反映系统的偏差,系统一旦出现偏差, 比例调节立即产生调节作用, 以减少误差。
Ki—积分调节系数。使系统消除稳态误差, 提高无差度。积分作用的强弱取决于积分时间,常数Ti 越小, 积分作用就越强。Kd— 微分调节系数。微分作用反映系统偏差信号的变化率, 具有预见性, 能预见偏差变化的趋势, 因此能产生超前的控制作用, 在偏差还没有形成之前, 已被微分调节作用消除。为了减少电源系统波动等因素引起的外来干扰,在编制控制算法时, 必须考虑利用积分环节, 即采用一段时间内连续稳定的输入信号而不是某一瞬时值的输入信号进行PID 运算, 以消除累积误差, 使转数在一定的范围内可调。这样, 牵引电机1 和牵引电机2 就能很好地进行同步控制且同步精度较高, 从而确保了运行机构的稳定性。

4 控制结果

利用STEP7 编制PLC 上位机监控程序,Wincc采集速度值并绘制曲线。数据提取的时间间隔为15ms。实际上牵引电机1 和牵引电机2 速度是相同的, 但为了反映牵引电机2 的跟踪和波动情况, 在此特地将其分开, 上面是牵引电机1 的速度曲线, 下面是牵引电机2 的速度曲线( 见图4) 。牵引电机1 的速度发生变化时, 牵引电机2 就能及时地响应, 进行跟踪, 并且能很快地达到稳定。实验表明, 采用PLC 和变频器的控制方法, 能达到较高的同步要求, 响应快、速度波动幅度较小。

5 结束语

该控制方法已在各种炉下车辆中应用。实际应用中, 走行同步起动效果明显, 车辆运行平稳。实践证明, 采用PLC 解决车辆分散驱动时电机速度同步的控制方法应用效果较好, 是一种理想的调速控制方法, 满足了生产工艺要求, 减少了设备的维修维护费用, 保证了车辆发挥正常的生产效率, 经济效益显著。随着PLC 与变频器控制方法的广泛应用, 必将更好地提高传动系统对速度控制的可靠性与灵活性。


展开全文
优质商家推荐 拨打电话