西门子6ES7216-2AD23-0XB8接线方式
在程序中用定时器来控制时间。SIMATIC S7-200系列可编程控制器设置了两种类型的定时器:接通延迟(On-Delay)定时器(TON),保持接通延迟”(Retentive On-Delay)定时器(TONR)。它们都可工作在三种精度下,即1 msec. 10msec和100msec。
本例说明了每种定时器的操作及使用方法,重点在于小同精度下,定时器的操作方法的区别。
例图
说明
一、概述
S7-200定时器由一个单独的使能输入端(IN)来控制,由于定时器是可使能的,因此,能够保留过去了的时间值。定时器还有一个预置时间值(PT),当前值更新时,它与当前值比较,定时器位(T位)置位/复位(set/reset)就取决于当前值与预置值的比较结果。
若当前值大于或等于预置时问值,定时器位接通(ON);否则,定时器位断开(OFF)。当前值达到大值时,计时停。
五、举例
在不同的时刻更新1ms. 10ms和100ms定时器所产生的效果,决定了你怎样使用定时器。例如,在下段程序中分析定时器的操作。
用常闭触点Q0.0代替定时器位(T位)作为定时器的使能输入,在一次扫描后定时器达到预定值时可保证接通输出Q0.0.
西门子PLC模和性能的大小,主要有S7-200,s7-300和s7-400三种,下面就简单介绍一下该三种产品的一些特性。
西门子plc根据规模和性能的大小,主要有S7-200,S7-300和S7-400三种,下面就简单介绍一下该三种产品的一些特性。
1、S7-200
针对低性能要求的摸块化小控制系统,它多可有7个模块的扩展能力,在模块中集成背板总线,它的网络联接有rs-485通讯接口和profibus两种,可通过编程器pg访问所有模块,带有电源、cpu和i/o的一体化单元设备。其中的扩展模块(em)有以下几种:数字量输入模块(di)——24vdc和120/230vac;数字量输出(do)——24vdc和继电器;模拟量输入模块(ai)——电压、电流、电阻和热电偶;模拟量输出模块——电压和电流。还有一个比较特殊的模块-通讯处理器(cp)——该块的功能是可以把s7-200作为主站连接到as-接口(传感器和执行器接口),通过as-接口的从站可以控制多达248个设备,这样就可以显著的扩展s7-200的输入和输出点数。
2、S7-300
相比较s7-200,s7-300针对的是中小系统,他的模块可以扩展多达32个模块,背板总线也在模块内集成,它的网络连接已比较成熟和流行,有mpi、工业以太网,使通讯和编程变得简单,选择性也比较多,并可借助工具进行组态和设置参数。s7-300的模块稍微多一点,除了信号模块(sm)和200的em模块同类型之外,它还有接口模块(im)——用来进行多层组态,把总线从一层传到另一层;占位模块(dm)——为没有设置参数的信号模块保留一个插槽或为以后安装的接口模块保留一个插槽;功能模块(fm)——执行特殊功能,如计数、定位、闭环控制相当于对cpu功能的一个扩展或补充;通讯处理器(cp)——提供点对点连接、profibus和工业以太网。
一、目的
用PLC构成装配流水线控制系统
图1 装配流水线控制示意图
二、控制内容
1. 1. 控制要求
起动后,按以下规律显示:D→E→F→G→A→D→E→F→G→B→D→E→F→G→C→D→E→F→G→H→D→E→F→G→A……循环,D、E、F、G分别是用来传送的,A是操作1,B是操作2,C是操作3,H是仓库。
2.I/O分配
输入 输出
起动按钮:I0.0 A:Q0.0 E:Q0.4
复位按钮:I0.1 B:Q0.1 F:Q0.5
移位按钮:I0.2 C:Q0.2 G:Q0.6
D:Q0.3 H:Q0.7
2. 按图所示的梯形图输入程序。
图2 装配流水线梯形图
三、装配流水线控制语句表
0
LD
I0.0
37
=
M1.1
77
=
Q0.3
1
O
M0.0
38
TON
T47,+50
78
LD
M10.2
2
AN
I0.1
39
LD
M1.1
79
O
M11.2
3
=
M0.1
40
AN
T47
80
O
M12.2
4
LD
M0.1
41
O
M1.2
81
O
M13.2
5
AN
M0.0
42
=
M20.0
82
=
Q0.4
6
TON
T37,+10
43
LD
M20.4
83
LD
M10.3
7
LD
T37
44
TON
T48,+80
84
O
M11.3
8
=
M0.0
45
AN
T48
85
O
M12.3
9
LD
I0.2
46
=
M1.2
86
O
M13.3
10
O
M2.0
47
LD
M1.0
87
=
Q0.5
11
AN
T57
48
SHRB
M20.0,M20.1,+4
88
LD
M10.4
12
AN
I0.1
89
O
M11.4
13
=
M2.0
49
LD
M20.1
90
O
M12.4
14
TON
T57,+10
50
TON
T39,+30
91
O
M13.4
15
LD
M2.0
51
LD
T39
92
=
Q0.6
16
O
M0.5
52
TON
T40,+15
93
LD
M20.1
17
=
M10.0
53
AN
T40
94
AN
T39
18
LD
M0.2
54
=
M0.2
95
=
Q0.0
19
=
M11.0
55
LD
M20.2
96
LD
M20.2
20
LD
M0.3
56
TON
T41,+30
97
AN
T41
21
=
M12.0
57
LD
T41
98
=
Q0.1
22
LD
M0.4
58
TON
T42,+15
99
LD
M20.3
23
=
M13.0
59
AN
T42
100
AN
T43
24
LD
M0.0
60
=
M0.3
101
=
Q0.2
25
SHRB
M10.0,M10.1,+5
61
LD
M20.3
102
LD
M20.4
62
TON
T43,+30
103
AN
T45
26
SHRB
M11.0,M11.1,+5
63
LD
T43
104
=
Q0.7
64
TON
T44,+15
105
LD
I0.1
27
SHRB
M12.0,M12.1,+5
65
AN
T44
106
AN
I0.0
66
=
M0.4
107
R
M20.1,4
28
SHRB
M13.0,M13.1,+5
67
LD
M20.4
108
R
M10.1,28
68
TON
T45,+30
109
R
M1.1,1
29
LD
M10.5
69
LD
T45
30
O
M11.5
70
TON
T46,+15
31
O
M12.5
71
AN
T46
32
O
M13.5
72
=
M0.5
33
EU
73
LD
M10.1
34
=
M1.0
74
O
M11.1
35
LD
M10.0
75
O
M12.1
36
O
M1.1
76
O
M13.1
虽然工业控制机和可编程控制器本身都具有很高的可靠性,但如果输入给PLC的开关量信号出现错误,模拟量信号出现较大偏差,西门子PLC输出口控制的执行机构没有按要求动作,这些都可能使控制过程出错,造成无法挽回的经济损失。
虽然工业控制机和可编程控制器本身都具有很高的可靠性,但如果输入给PLC的开关量信号出现错误,模拟量信号出现较大偏差,西门子PLC输出口控制的执行机构没有按要求动作,这些都可能使控制过程出错,造成无法挽回的经济损失。
影响现场输入给PLC信号出错的主要原因有:
造成传输信号线短路或断路(由于机械拉扯,线路自身老化,特别是鼠害),当传输信号线出故障时,现场信号无法传送给PLC,造成控制出错;2)机械触点抖动,现场触点虽然只闭合一次,PLC却认为闭合了多次,虽然硬件加了滤波电路,软件增加微分指令,但由于PLC扫描周期太短,仍可能在计数、累加、移位等指令中出错,出现错误控制结果;3)现场变送器,机械开关自身出故障,如触点接触不良,变送器反映现场非电量偏差较大或不能正常工作等,这些故障同样会使控制系统不能正常工作。
影响执行机构出错的主要原因有:
控制负载的接触不能可靠动作,PLC发出了动作指令,但执行机构并没按要求动作;2)控制变频器起动,由于变频器自身故障,变频器所带电机并没按要求工作;3)各种电动阀、电磁阀该开的没能打开,该关的没能关到位,由于执行机构没能按PLC的控制要求动作,使系统无法正常工作,降低了系统可靠性。要tigao整个控制系统的可靠性,必须tigao输入信号的可靠性和执行机构动作的准确性,否则PLC应能及时发现问题,用声光等报警办法提示给操作人员,尽快排除故障,让系统安全、可靠、正确地工作。 1、可以在软件中进行自动整定;
2、自动整定的PID参数可能对于系统来说不是好的,就需要手动凭经验来进行整定。P参数过小,达到动态平衡的时间就会太长;P参数过大,就容易产生超调。
PID功能块在梯形图(程序)中应当注意的问题:
1、好采用PID向导生成PID功能块;
2、我要说一个简单的也是容易被人忽视的问题,那就是:PID功能块的使能控制只能采用SM0.0或任何1个存储器的常开触点并联该存储器的常闭触点这样的yongbu断开的触点!
笔者在以前的一个工程调试中就遇到这样的问题:PID功能块有时间动作正常,有时间动作不正常,而且不正常时发现PID功能块都没问题(PID参数正确、使能正确),就是没有输出。后查了好久,突然意识到可能是使能的问题——我在使能端串联了启动/停止控制的保持继电器,我把它改为SM0.0以后,一切正常!
同时也明白了PID功能块有时间动作正常,有时间动作不正常的原因:有时在灌入程序后保持继电器处于动作的状态才不会出现问题,一旦停止了设备就会出现问题——PID功能块使能一旦断开,工作就不会正常!
把这个给大家说说,以免出现同样失误。
下面是PID控制器参数整定的一般方法:
PID控制器的参数整定是控制系统设计的核心内容。它是根据被控过程的特性确定PID控制器的比例系数、积分时间和微分时间的大小。
PID控制器参数整定的方法很多,概括起来有两大类:
一是理论计算整定法。
它主要是依据系统的数学模型,经过理论计算确定控制器参数。这种方法所得到的计算数据未必可以直接用,还必须通过工程实际进行调整和修改。
二是工程整定方法。
它主要依赖工程经验,直接在控制系统的试验中进行,且方法简单、易于掌握,在工程实际中被广泛采用。PID控制器参数的工程整定方法,主要有临界比例法、反应曲线法和衰减法。三种方法各有其特点,其共同点都是通过试验,然后按照工程经验公式对控制器参数进行整定。
1234
但无论采用哪一种方法所得到的控制器参数,都需要在实际运行中进行后调整与完善。现在一般采用的是临界比例法。利用该方法进行PID控制器参数的整定步骤如下:
(1)首先预选择一个足够短的采样周期让系统工作;
(2)仅加入比例控制环节,直到系统对输入的阶跃响应出现临界振荡,记下这时的比例放大系数和临界振荡周期;
(3)在一定的控制度下通过公式计算得到PID控制器的参数。
PID参数的设定:是靠经验及工艺的熟悉,参考测量值跟踪与设定值曲线,从而调整P\I\D的大小。
比例I/微分D=2,具体值可根据仪表定,再调整比例带P,P过头,到达稳定的时间长,P太短,会震荡,永远也打不到设定要求。
PID控制器参数的工程整定,各种调节系统中P.I.D参数经验数据以下可参照:
温度T:P=20~60%,T=180~600s,D=3-180s;
压力P:P=30~70%,T=24~180s;
液位L:P=20~80%,T=60~300s;
liuliangL:P=40~,T=6~60s。
书上的常用口诀:
参数整定找佳,从小到大顺序查;
先是比例后积分,后再把微分加;
曲线振荡很频繁,比例度盘要放大;
曲线漂浮绕大湾,比例度盘往小扳;
曲线偏离回复慢,积分时间往下降;
曲线波动周期长,积分时间再加长;
曲线振荡频率快,先把微分降下来;
动差大来波动慢。微分时间应加长;
理想曲线两个波,前高后低4比1;
一看二调多分析,调节质量不会低。
经过多年的工作经验,我个人认为PID参数的设置的大小,一方面是要根据控制对象的具体情况而定;另一方面是经验。P是解决幅值震荡,P大了会出现幅值震荡的幅度大,但震荡频率小,系统达到稳定时间长;I是解决动作响应的速度快慢的,I大了响应速度慢,反之则快;D是消除静态误差的,一般D设置都比较小,而且对系统影响比较小。对于温度控制系统P在5-10%之间;I在180-240s之间;D在30以下。对于压力控制系统P在30-60%之间;I在30-90s之间;D在30以下。
这里介绍一种经验法。这种方法实质上是一种试凑法,它是在生产实践中总结出来的行之有效的方法,并在现场中得到了广泛的应用。
这种方法的基本程序是先根据运行经验,确定一组调节器参数,并将系统投入闭环运行,然后人为地加入阶跃扰动(如改变调节器的给定值),观察被调量或调节器输出的阶跃响应曲线。若认为控制质量不满意,则根据各整定参数对控制过程的影响改变调节器参数。这样反复试验,直到满意为止。
经验法简单可靠,但需要有一定现场运行经验,整定时易带有主观片面性。当采用PID调节器时,有多个整定参数,反复试凑的次数增多,不易得到佳整定参数。
下面以PID调节器为例,具体说明经验法的整定步骤:
A.让调节器参数积分系数S0=0,实际微分系数k=0,控制系统投入闭环运行,由小到大改变比例系数S1,让扰动信号作阶跃变化,观察控制过程,直到获得满意的控制过程为止。
B.取比例系数S1为当前的值乘以0.83,由小到大增加积分系数S0,同样让扰动信号作阶跃变化,直至求得满意的控制过程。
C.积分系数S0保持不变,改变比例系数S1,观察控制过程有无改善,如有改善则继续调整,直到满意为止。否则,将原比例系数S1增大一些,再调整积分系数S0,力求改善控制过程。如此反复试凑,直到找到满意的比例系数S1和积分系数S0为止。
1234
D.引入适当的实际微分系数k和实际微分时间TD,此时可适当增大比例系数S1和积分系数S0。和前述步骤相同,微分时间的整定也需反复调整,直到控制过程满意为止。
PID参数是根据控制对象的惯量来确定的。大惯量如:大烘房的温度控制,一般P可在10以上,I=3-10,D=1左右。小惯量如:一个小电机带一台水泵进行压力闭环控制,一般只用PI控制。P=1-10,I=0.1-1,D=0,这些要在现场调试时进行修正的。
PID控制说明:
在工程实际中,应用为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。
当被控对象的结构和参数不能完全掌握,或得不到jingque的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术为方便。即当我们不完全了解一个系统和被控对象,或不能通过有效的测量手段来获得系统参数时,适合用PID控制技术。
PID控制,实际中也有PI和PD控制。PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。
比例(P)控制:比例控制是一种简单的控制方式。其控制器的输出与输入误差信号成比例关系。当仅有比例控制时系统输出存在稳态误差。
积分(I)控制:在积分控制中,控制器的输出与输入误差信号的积分成正比关系。对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统。为了消除稳态误差,在控制器中必须引入“积分项”。积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。因此,比例+积分(PI)控制器,可以使系统在进入稳态后无稳态误差。
微分(D)控制:在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。其原因是由于存在有较大惯性组件(环节)或有滞后组件,具有抑制误差的作用,其变化总是落后于误差的变化。解决的办法是使抑制误差的作用的变化“超前”,即在误差接近零时,抑制误差的作用就应该是零。
这就是说,在控制器中仅引入“比例”项往往是不够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是“微分项”,它能预测误差变化的趋势,这样,具有比例+微分的控制器,就能够提前使抑制误差的控制作用等于零,甚至为负值,从而避免了被控量的严重超调。所以对有较大惯性或滞后的被控对象,比例+微分(PD)控制器能改善系统在调节过程中的动态特性。