浔之漫智控技术-西门子PLC代理商
西门子PLC模块 , 变频器 , 触摸屏 , 交换机
西门子模块6ES7214-2AD23-0XB8正规授权

西门子模块6ES7214-2AD23-0XB8正规授权

  

1 引言

可编程控制器是专门为工业控制设计的,在设计和制造过程中厂家采取了多层次抗干扰措施,使系统能在恶劣的工业环境下与强电设备一起工作。运行的稳定性和可靠性很高,PLC整机平均无故障工作时间高达几万小时。随着计算机技术的发展,PLC的功能也越来越强,使用越来越方便,因此在工业控制系统中使用日益广泛。但是,整机的可靠性高只是保证系统可靠工作的前提,还必须在设计和安装PLC系统过程中采用相应的措施,才能保证系统可靠工作。本文主要论述在设计和安装PLC系统过程中的干扰措施。

2 PLC系统的基本组成结构


可编程控制器硬件系统由PLC主机、功能I/O单元和外部设备组成,如图1所示。其中PLC主机由CPU、存储器、基本I/O模块、I/O扩展接口、外设接口和电源等部分组成,各部分之间由内部系统总线连接。

3 PLC系统设计时的抗干扰措施


3.1 硬件措施
(1) 屏蔽:对电源变压器、中央处理器、编程器等主要部件,采用导电、导磁性良好的材料进行屏蔽处理,以防止外界干扰信号的影响。


(2) 滤波:对供电系统计输入线路采用多种形式的滤波处理,以消除和抑制高频干扰信号,也削弱了个模块间的相互影响。
(3) 电源调整与保护:电源波动造成电压畸变或毛刺,将对PLC及I/O模块产生不良影响。对微处理器核心部件所需要的+5V电源采用多级滤波处理,并用集成电压调整器进行调整,以适应交流电网的波动和过电压、欠电压的影响。尽量时电源线平行走线,时电源线对地呈低阻抗,以减少电源噪声干扰。其屏蔽层接地方式不同,对干扰抑制效果不一样,一般次级线圈不能接地。输入、输出线应用双绞线且屏蔽层应可靠接地,以抑制共摸干扰。
(4) 隔离:在微处理器与I/O电路之间,采用光电隔离措施,有效地把他们各离开来,以防外部的干扰信号及地线环路中产生的噪声电信号通过公共地线进入PLC本机,从而影响其正常工作。
(5) 采用模块式结构:这种结构有助于在故障发生时进行短时期修复,一旦查出某一模块出现故障,可迅速更换,使系统恢复正常工作,同时也有助于加速查找系统故障的原因。
3.2 软件措施
为了tigao输入信号的信噪比,常采用软件数字滤波来tigao有用信号真实性。对于有大幅度随机干扰的系统,采用程序限幅法,即连续采样5次,若某一次采样支援远大于其他几次采样的幅值,那么就舍取之。对于liuliang、压力、液面、位移等参数,往往在一定范围内频繁波动,则采用算术平均法。即用n次采样的平均值来代替当前值。一般认为:liuliangn=12,压力n=4合适。
(1) 故障诊断:系统软件定期地检测外界环境,如掉电、欠电压、锂电池电压过低及强干扰信号等,以便及时反映和处理。
(2) 信号保护和恢复:当偶尔性故障发生时,不破坏PLC内部的信息,一旦故障现象消失,就可以恢复正常,继续原来的工作。
(3) 设置警戒时钟WDT:如果程序循环扫描执行时间超过了WDT规定的时间,预示了程序进入死循环,立即报警。
(4) 加强对程序的检查和校验:一旦程序有错,立即报警,并停止执行程序。
(5) 对程序及动态数据进行电池后备:当停电时利用后备电池供电,保持有关信息和状态数据不丢失。

4 PLC系统安装时的抗干扰措施

PLC各部分的组成和系统连接及装配方法必须严格按照说明书上安装要求进行,这一点非常重要,是保证系统可靠运行的基本条件。
4.1 电源接线和地线接线
要合理布置电源线,强电与弱电要严格分开,且弱电电源线要尽量加。
接地在消除干扰上起很大的作用。交流地是PLC控制系统供电所必需的,它通过变压器中心点构成供电两条回路之一。这条会路上的电流、各种谐波电流等是个严重的干扰元。因此交流地线、直流地线、模拟地和数字地等必须分开。数字地和模拟地的共点地好置悬浮方式。地线各点之间的电位差尽可能小,尽量加粗地线,有条件可采用环形地线。
系统地端子(LG)是抗干扰的中性端子,通常不需要接地,可是,当电磁干扰比较严重时,这个端子需与接大地的端子(GR)连接。为防止电流冲击,应使用截面积大于2mm2的14#专用接地线将GR端与大地相接,接地电阻应小于100Ω,接地长度小于20m。
4.2 输出端子的接线
(1) 当几个外部设备连接带一个电源上时,应使用短接片将其输出端子对应的公共端子短接。输出端可以使用不同的电压,这时其对应的公共端应分别接入不同的电压源。
(2)交流输出线与直流输出线不能使用同一根电缆。输出线应远离高压线核动力线,且不得并行。不得将外部设备连接到带“·”的输出端上。
(3) 输出回路中应有熔断器保护PLC的输出元件。流入输出端子的大电流不应超过PLC的允许值,否则必须外接接触器或继电器。同样,若负载电流低于规定的小值时,应并联一个阻容吸收电路,如图2所示。电阻取50Ω,电容取0.1μf。


(4) 电感性负载断电时会产生很大的自感电动势,当电路接通时,起触点处将产生电弧,严重时,发生触点烧结。因此要在电感线圈上并联一个续流二极管。如图3所示。


4.3 电缆的敷设
当动力电缆超过10A/400V或20A/220V,若要求与输入输出电缆并行放置,那么在两者之间至少相隔300 mm。
如果将它们放在一个槽内时,它们之间必须间隔100 mm以上,且一定要用接地的金属屏蔽起来。
特别注意的是PLC的基本单元与扩展单元之间的电缆是传送电压低的高频信号,很易受到干扰,因此,不能将它与其他电缆设在同一管道内。另外,使用的电缆应是截面积小于1.5mm2的屏蔽电缆。好使用电缆管敷设电缆。使用排线槽时。长度瑶足以包含全部的输入输出连线,并与其它电缆分开。
把输入线绞合,绞合的双绞线能降低共膜干扰,由于改变了导线电磁感应的方向,从而使其感应相互抵消。如图4所示。


信号采集是模拟线路时导线可捆扎在一起。数据线和脉冲线不能接近或捆扎在一起。否则数据线上全“1”时,在脉冲线上造成干扰,反之亦然。
使用屏蔽线作输入线,只需一端接地。若两端接地,由于接地电位差在屏蔽层内会流过电流而长生干扰。为了泄放高频干扰,数字信号线的屏蔽层应并联电位均衡线,其电阻应小于屏蔽电阻的十分之一,并将屏蔽层两端接地,若考虑抑制低频干扰也可一端接地。

5 结束语

PLC应用系统工作环境恶劣,周围有各种各样的干扰,尽管PLC本机的可靠度很高。但是在系统设计和安装时,仍必须对环境作全面的分析,确定干扰的性质,采取相应的抗干扰措施,以保证系统长期稳定的工作。

  以前,我国对电机的试验一直是非智能化的,一般采用人工单机控制,时效性较差,误差也较大,很难满足测试的要求。
    近几年来,我国对电机的智能检测有了很大的发展,国内电机行业的检测装备和检测技术有了较快的发展,各种检测传感器、检测仪器已比较齐备,而且性能也较稳定,为电机检测系统的研制提供了有利的条件。但就高压电机检测系统的实际应用而言,还存在着以下不足:高压电机检测系统的自动化程度较低、系统的可靠性、安全性不够等等。
    高压试验系统投资总额较高,而作为投资方的电机质检机构,希望在原有低压检测系统的基础上进行设备改造,研制出能进行高压电机试验的检测系统。同时,制造企业由于各种因素的制约,缺少完备的型式试验设备和相关的技术人员,对存在的性能缺陷往往不能准确进行地诊断,分析缺陷的原因,提出明确的改进建议。
    所有的电机(包括高压电机)在出厂之前都要经过型式试验和性能测试,全面达到技术要求之后才能投产或继续生产。这些测试或试验的数据包括电机的电压、电流、转速、功率、转差率、频率、效率、温度、电阻等,这些参数是在满足GB1032三相异步电动机试验方法等国家有关标准的精度及其安全要求的基础上通过空载试验、负载试验、温升试验、转矩试验等多种试验获得的,本文所介绍的智能高压电机试验系统具有自动测试功能,通过测量数据,能够很好地反映电机性能及其质量。
1.1 电机型式试验简介
    电机试验是利用仪器、仪表及相关设备,按照相关标准的规定,对电机制造过程中的半成品和成品,或以电机为主体的配套产品的电气性能、力学性能、安全性能及可靠性能等技术指标进行的检验。通过这些检验,可以全部或部分的反映被试电机的相关性能数据,用这些数据,可以判断被试产品是否符合设计要求、品质的优劣以及改进的目标和方向。
    所谓型式试验是一种全面的性能试验,能够较确切地得到被试电机的有关性能参数的试验,其目的是为了确定电机的电气和机械参数是否全面达到技术要求,各种型式电机均需要通过本试验才能投产或继续生产。和英、苏、德等国家都把型式试验当作一种性能试验,用来检查电机的特性和参数。这种试验一般只对各种型式电机中的台或首批的几台样机进行,所以称为型式试验。
    根据需要,试验可包括标准中规定的所有项目,也可以是其中的一部分项目。
    按国家标准规定,在下述情况下,应进行型式试验:
1.新设计试制的产品;
2.经鉴定定型后小批试投产的产品;
3.设计或故意上的变更足以引起电机的某些特性和参数发生变化的产品;
4.检查试验结构与以前试验结构发生不可容许的偏差的产品;
5.产品自定型投产后的定期抽试。
1.1.1 空载试验和负载试验
    电机试验的项目很多,如空载试验、负载试验、堵转试验、温升试验等等,在此系统设计中只介绍和设计了空载和负载试验。所以有必要弄清它们的试验目的和试验过程。
1.空载特性试验
(1)试验目的:
三相异步电动机的空载试验是给定子施加额定频率的额定电压,试验目的:
a.检查电机的运转的灵活情况,有无异常噪声和较强的振动;
b.通过测试求得电机在额定电压时的铁心损耗和在额定转速时的机械损耗;
c.通过试验得出空载电流与空载电压的关系曲线。这条曲线其实就是一条磁化曲线。它可以反映出电机磁路工作的情况,例如铁心材料的性能,转子的气隙等的选择是否合理。
(2)试验过程:
    将电机启动后保持额定电压和额定频率空载运行到机械损耗稳定。判断机械损耗稳定的标准是:输入功率相隔半个小时的两个读数之差不大于前一次输入功率的3%,在实际应用中,一般凭经验来确定,对1KW以下的电机一般运行15~30min,对1~10KW的电机一般运行30~60min,对大于10KW的电机应为60~90min.
    试验时,施于定子绕组上的电压从1.1~1.3Un开始,逐渐降低到可能达到的低电压值,使电流开始回升为止,其间测取7~9个点,每个点应测取下列数值:三相电压(如可确定三相平衡时,可只测一相),三相电流,输入功率P0。
2.负载试验
(1)试验目的:
    负载试验的目的实际上是要测取电机的工作特性曲线,考虑效率和功率因素是否合格,取得分析电机运行性能的必要数据。
(2)试验过程:
    测试应在被试电机接近热状态下进行,在额定功率和额定频率下,改变负载,在1.25~0.25倍额定功率范围内测取6~8点读数,每点同时测量:三相电压,三相电流,输入功率,功率因素,转差率,输出转矩。转差率实际是通过测出转子的转速计算出来的。
1.1.2 电机测试标准
    本试验中要实现系统的设计首先必须满足GB1032三相异步电动机试验方法等国家有关标准的精度及安全要求:
1.试验电源
1)试验电源的电压波形正弦畸变率(电压波形中所包含的除基波分量以外的各次谐波的有效值平方和的根值与基波分量有效值之比的百分数)应不超过5%,在进行温升试验时应不超过2.5%。
2)试验电源的三相电压对称系统应符合下述要求:
    电压的负序分量和零序分量均不超过正序分量的1%;在进行温升试验时,负序分量不超过正序分量的0.5%,零序分量的影响予以消除。
    试验电源的频率与额定频率之差应在额定频率±1%范围内。
2.测量仪表
    试验时,采用的电气测量仪表的准确度应不低于0.5级,三相瓦特表的准确度应不低于1.0级,互感器的准确度应不低于0.2级,电量变送器的准确度应不低于0.5%级(检查试验时应不低于1%),数字式转速测量仪及转差率测量仪的准确度应不低于0.1%±1个字,转矩测量仪及测功机的准确度应不低于1%(实测效率应不低于0.5%)。
    选择仪表时,应使测量值位于20%-95%仪表量程范围内。
3.测量要求
进行电气测量时,应遵循下列要求:
1) 三相电流用三电流互感器(或二互感器)法。
2) 采用电流互感器时,接入付边回路仪表的总阻抗(包括连接导线)应不超过其额定阻抗值。
3)试验时,各仪表读数同时读取。在测量三相电压或三相电流时,应取三相读数的平均值作为测量的实际值。
1.2 电机自动测试的特点及和当前电机测试的现状
    以往的电机测试往往采用普通的指针式仪表由人工读数、人工记录,然后由人工整理成数据并描绘曲线或编写实验报告。由于某些原因如电源的波动、频率波动、负载波动等因素会使仪表的指针摆动,为了能比较准确的读出某一瞬间的各项被测参数,往往需要几个人同时读表,工作效率低。不仅如此,由于读表的不同时性以及读数、记录、计算中各种人为误差还会使实验数据分散性大,试验经过的准确度低,重复性差,现在这种测试方法基本被淘汰。
    另外一种测量方式是使用各种电子测量仪表,如多功能电参数测试仪可以测量电机在各种状态下的转矩、转速、输出功率等,这类仪器一般由单片机构成,测量精度高,采用数字显示,功能比较完备,tigao了自动化程度,但是对数据的处理、试验过程中的读数同步等问题,仍然不够理想。
    在数字仪表的基础上发展起来的数字式自动测试系统可以控制测量过程,处理测试数据,记录与显示测量结果。
    采用微机的电机自动测试系统在测试功能、测量精度等各项指标上都远远超过了传统的实验方法。使电机测试步入了新的时代。[21]
    近几年来,由于计算机的功能不断强大,各种人机界面软件不断涌现,这给电机测试提供了可视化监控画面。这又使电机测试迈进了一大步。
1.3 系统设计的主要内容及要求
    本课题实现的是一个高压电气控制系统,拟在论证各种高压检测实现方案的基础上,选择一种方案设计。并以H400以下,500KW以下、额定电压10KV样机为试验对象,设计自动控制系统,能够完成高压电机一般性能的检测。并且选定合适的变压器、调压器、高压设施、电缆等,能够实现高压电机一般性能项目的检测,满足GB1032三相异步电动机试验方法等国家有关标准的精度及安全要求。绘制原理图、主回路、控制回路、测量回路框图,设计控制流程及程序、进行量程分档,选用合适的仪器设备及其参数设置,完成系统总体设计。

1.4 本文完成的主要工作

  本文完成的主要工作如下:

(1)分析型式试验要求,查阅并检索国内外电机试验的文献资料;
(2)研究高压试验方法标准及试验方案,确定总体方案;
(3)设计电机试验主回路系统;
(4)按照标准精度要求选用仪器仪表,设计测量回路;
(5)设计电气控制系统,包括上位机、下位机、保护系统及上位机和下位机的通讯;
(6)系统设计展望并对本文进行小结。

1.5 论文的体系结构

  根据设计的主要内容,论文各章节之间的体系结构如图1.1所示:





第2章 系统总体方案设计



  目前电机自动测试系统的主要组成很相似,主要有:微机系统及其外部设备、测试硬件平台、各种数字测试仪器。在试验的方法上主要有两种类型:一个就是试验的过程控制是由测试硬件平台来实现,微机系统只进行数据处理、曲线绘制等。比如浙江大学电磁研究所1995年研制的一套电机自动测试系统,它是用微机接口控制器来实现控制的。还有就是美国西屋公司研制的电机自动测试系统,整个试验过程是由PLC实现的。

  随着微机技术的发展,微机的性能越来越强大,软件的发展也使实现控制变得极为方便、灵活,所以现在大多数系统都把控制逻辑由微机控制,通过通讯口对设备进行控制,因为运行在微机上的软件编写非常灵活,很多功能非常容易实现,能进行复杂的逻辑运算、判断,而且运算速度非常快,系统灵活性大大增加。

  本课题所要设计的高压电机智能试验系统,和传统的电机试验一样,要实现负载试验,首先必须有一个总的构思:
  高压电机试验系统首先要考虑为被试电机提供一个可调的高压电源,有个可调高压电源,考虑本系统完成的是电机的负载试验,必须让负载变化,所以必须还得提供一个可调的大功率负载,而且这个负载必须平滑可调。在本系统中,负载是利用与被测电机电压、功率相同的另一台负载电机M2来实现的。为了让系统按设定的要求工作,必须采用PLC对其控制,而且试验过程中各个参数必须通过测量系统和数据采集才能上传至上位机,通过组态软件实施监控。

2.1系统所要实现的功能

1)系统能够使变频机组的频率在允许的范围内(保证负载电机不过载)平滑可调;
2)系统能够实现被试电机负载平滑可调;
3)系统能够按照试验要求对变频电源和负载实现自动控制;
4)系统能够按要求实时采集数据,并能把数据通过串行口传输到上位机,软件提供可视化菜单;
5)系统能够在遇到异常情况(如过压、过载等)自动切断电路或发出报警信号。

2.2 系统的组成

  本智能试验系统与传统的电机试验系统有所区别,本系统不但要实现电机的试验,而且要实现控制自动化,数据采集自动化,并能实现微机现场监控参数变化,更重要的是所涉及的试验电机为10KV的高压电机,还要考虑高压保护等,因此,勿庸置疑,本系统设计要涉及更多控制和保护模块。

  根据系统的设计及控制要求,试验系统分为控制子系统、高压子系统、可调负载子系统、测量系统、数据采集子系统和组态监控系统等部分。

  控制子系统由上位机(工控机)、下位机(PLC)和控制装置三个部分组成。上位机采用组态王组态软件进行现场监控;下位机采用三菱PLC进行控制。

  数据采集系统考虑采用传感器、变送器、A/D转换装置通过RS-485接口把数据传送到上位机或者通过自带RS-485接口的高精度智能仪表直接把数据上传到上位机,组态界面实时监控试验结果。

  同时,组态软件也为试验者提供了可视化监控画面,有利于试验者实时现场监控。
系统组成框图如图2所示:

2.3 系统的工作原理

  图2中,虚线框中控制及其高压保护装置、被试电机以及可调负载构成了主回路系统。PLC按要求控制主回路系统的工作,当被试电机的电压和负载满足要求时,测量系统启动,测量主回路中被试侧和负载侧的各个参数,然后通过数据采集系统把数据传输到工控机,组态界面对数据进行监控。PLC和工控机之间通过串行接口连接,工控机可通过PLC控制现场的工作流程。整个工作构成了一个智能化电机测试系统。
3.1 设计的重要性及思想

1.主回路设计的重要性:

  实现高压电机试验首先必须解决的问题之一是主回路的设计,这步非常关键,控制系统和测量系统都是基于主回路系统工作,并对它进行自动化、智能化控制及测量,是整个系统设计的基石。

2.设计的基本思想:

1)负载可调;
  考虑系统要实现的功能和设计的要求,既然是负载试验,首先必须解决负载问题,为了方便起见,采用双电机系统,只要让负载电机工作在发电状态,即成为被试电机的负载,但是又必须解决负载在一定范围(被试电机允许的负载)之内平滑可调,只要在一定频率范围内改变负载电机的频率,即可改变被试电机的负载,本系统中采用变频机组来平滑调节频率,这样达到改变被试电机负载的目的。

2)高压可调;
  系统一般进线电压为380V,要实现所规定的高压,并且让其可调,必须用到升压变压器和调压侧,所以在两侧都要用升压变压器和调压器。

3)测量仪表的选定;
  在本系统中测量电流用电流互感器,考虑负载的大幅变化,被测电流的变化范围,要用到几组电流互感器来随电流的变化自动切换,tigao电流测量的精度。电压的测量采用电压互感器。

4)稳压和稳频;
  主电路中进线电压为电网电压,难免会有所波动,而且,调压过程中电压也会略有抖动,因此,考虑在被试侧的低压侧接上稳压器件。负载侧由于变频机组本身具有稳压、稳频功能。所以不需要再接稳压器件。

5)高压保护装置;
  因为两侧都是高压线路,所以在两侧必须装有高压断路器和高压隔离开关,以便电路在异常情况下自动切断线路,也有利于手动控制线路。

3.2 主回路的硬件接线及工作原理

  基于3.1节设计思想主回路硬件接线如图3.1所示:




QF:高压断路器;QS:高压隔离开关;TA:电流互感器;TV电压互感器;TB:调压器;T:变压器;FU:熔断器


展开全文
优质商家推荐 拨打电话